
Chapter 2: Bayes’ theorem

Rafal Urbaniak and Nikodem Lewandowski

1 Bayesian inference

1.1 Odds and binomial probability distribution

Read/watch first
• Bayesian statistics the fun way (Will Kurt), Chapters 1-4.

If P(H) is the probability of H , then P(H)
P(¬H) is the odds of H . These are interchangeable, and can be translated

back and forth as follows. First let’s do this for one case.

pH <- 0.3 #example of a pr of H
pnH <- 1 - pH #calculate the probability of not-H
odds <- pH/pnH
odds

## [1] 0.4285714

We can generalize and define a function that takes an arbitrary probability and converts it to odds.

prToOdds <- function (pH){pH/ (1- pH)} #define the function
#of one variable, denoted pH

prToOdds(.3) #check if the result is the same

## [1] 0.4285714

The formula for the odds-to-probabilities direction is:

P(H) =
odds(H)

odds(H) + 1
. (1)

Exercise 1
Write a function that converts odds to probabilities, call it oddsToPr. Apply it to odds = .42 and check if you

get the result approximately close to .3.

Binomial coefficient: the number of ways you can choose k objects from among n objects, where the order
doesn’t matter. Mathematically, count all permutations of n objects, divide by the number of permutations of your
subset, because the order within it doesn’t matter, and divide by the number of permutations of the objects not in
your subset, because their ordering doesn’t matter either. (Note for future reference that that 0! = 1).

(
n
k

)
=

n!
k!× (n− k)!

(2)

In R, this is a one-liner.

choose(3,2) #ways to choose 2 objects from among 3 objects

## [1] 3
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What’s the probability of getting exactly 3 heads in 4 tosses of a fair coin?

• First, count ways you could get 3 heads in 5 tosses,
(5
3
)
.

• Then, calculate the probability of each such an outcome: P(heads)3 × P(1− P(heads))5−3.
• Finally multiply each such probability by the number of the ways.

The general formula for binomial probability calculation requires: the number of trials n, the number of suc-
cesses k, the probability of success in each trial, p. Denote the probability of exactly k sucesses in n trials with
fixed success probability p as B(k,n,p).

B(k,n,p) =
(
n
k

)
pk(1− p)n−k (3)

This can be easily calculated in R. Say we’re tossing a fair coin 24 times, and we want to know what’s the
probability of obtaining exactly 12 heads:

dbinom(x = 12, size = 24, prob = .5)

## [1] 0.1611803

dbinom(12,24,.5) #note argument names are optional

## [1] 0.1611803

If you specify the parameters in the first line (successes, trials, probability at each trial), you can give them in
any order. If you just give the numerical values (as in the second line above), this is exactly the order in which they
will be interpreted.

Exercise 2
What is the probability of obtaining exactly 3 heads in 6 tosses, if the coin is unfair and the probability of heads

is .6? What is the probability of 3 heads in 6 tosses, if the probability of success is .55?

Now, let’s take five tosses of fair coins and obtain the probability mass function for the possible outcomes. For
five tosses there are six possible outcomes: 0, 1, 2, 3, 4, 5. Note the use of vectorized calculations.

outcomes <- 0:5 #create sequence 0, ..., 5, call it outcomes
probabilities <- dbinom(outcomes, 5, .5)
probabilities

## [1] 0.03125 0.15625 0.31250 0.31250 0.15625 0.03125

We can visualise this PMF using a barplot in ggplot2.

#put together with format: column name = data
table <- data.frame(outcomes = outcomes,

probabilities = probabilities)

#now plot
ggplot(table, aes(x = outcomes, y = probabilities))+ #set up
geom_bar(stat="identity")+ #barplot layer
scale_x_continuous(breaks = outcomes)+ th #fix ticks on x axis
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Exercise 3
Calculate and visualise the PMF for the outcomes of 15 coin tosses with the probability of success = .7.

The e− notation might look fun. This is the so-called standard index form for numbers that are too small or
too large to write normally. A nonzero number can be written as m × 10n, which is written also as men. For
instance, 0.02 is 2×102, that is, 2e−2, and 2000 is 2×103, that is 2e3. Basically, think of the number after e to as
telling you how many slots you need to move the decimal point, and the sign (plus or minus) as telling you which
direction to move it.

Sometimes we will not be interested in the probability of exactly k successes, but rather in the probability of
at most k successes (let’s call this the cumulative (probability) mass function), or that the number of successes is
greater than k. Mathematically, these can be obtained by summing all the relevant probabilities. Programmatically,
we can use pbinom.

pbinom(3,6,.5) #at most 3 successes in 6 tosses of a fair coin

## [1] 0.65625

pbinom(3,6,.5, lower.tail = FALSE) # at least 4 successes

## [1] 0.34375

pbinom(3,6,.5) + pbinom(3,6,.5, lower.tail = FALSE) #note these should add to 1

## [1] 1

Exercise 4
Calculate and visualize the cumulative probabilities for the outcomes of 10 coin tosses with the probability of

success = .3. The plot should be increasing and approaching 1.
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1.2 Beta distributions

Read/watch first
• Bayesian statistics the fun way (Will Kurt), Chapter 5.

Recall, beta distribution can be thought as a continous generalization of the binomial distribution.

β(p,a,b) =
pa−1(1− p)b−1

Beta(a,b)
(4)

where Beta(a,b) is a normalizing constant (the integral from 0 to 1 of pa−1 × (1 − p)b−1.), p is the probability of
an event (success), a expresses how many times the event has been (or is imagined to have been) observed, and b
how many a failure has been (or is imagined to have been) observed, and the total number of trials is a+ b.

Just like we calculated probabilities for the binomial distribution, we can calculate densities for the beta distri-
bution as well. Let’s do so with a visualisation, say for a = 4,b = 5. This time we’ll use a line, not a barplot. This
is, intuitively, what you belief distribution should be in the actual bias of a coin if all that you have observed is four
heads and five tails in nine tosses. Moreover, note how we run calculations only for a finite selection of points –
this is called grid appoximation.

ps <- seq(0,1,by = 0.01) #note we take a selection of p
#to use in grid approximation

densities <- dbeta(ps,4,5)
table <- data.frame(p = ps, density = densities)

ggplot(table, aes(x = ps, y = densities))+ th+
geom_line()
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Observe that the values go above 1. This clearly suggests that they aren’t probabilities. And indeed, probabili-
ties correspond rather to areas under the curve not to the curve itself (the curve is just the derivative of cumulative
probability distribution).

Observe that you can find the “center” of the distribution and its variance using dBETA from the fitODBOD
package. The first output is just the same as that of dbeta, so we look only at the remaining ones.
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dBETA(ps,4,5)[-1]

## $mean
## [1] 0.4444444
##
## $var
## [1] 0.02469136

Note that the distribution is simply centered around the frequency of heads.

4/9

## [1] 0.4444444

To calculate probabilities for various ranges of p values, we need to calculate areas under the curve within
certain limits. For instance, to calculate the probability that p ≤ .5 we calculate the area under the curve between
0 and .5, we do so by integrating.

integrate ( function (ps) dbeta(ps,4,5), lower = 0, upper = .5)

## 0.6367187 with absolute error < 7.1e-15

Exercise 5
With the same beta distribution, what’s the probability that p is between .4 and .7?

Exercise 6
Now suppose the distribution captures 25 observations, 17 of which were heads. Visualise the beta distribution.

What is its mean and variance? What’s the probability that p is above .7?

1.3 Conditional probability and Bayes’ theorem

Read/watch first
• Bayesian statistics the fun way (Will Kurt), Chapters 6, 7.
• Statistical rethinking (Richard McElreath), Section 2.1.

The product rule has it that:

P(B∧A) = P(B)P(A|B) = P(A)P(B|A) (5)
P (B∧A) = P (B)P (A|B) = P (A)P (B|A) (6)

For instance, if the probability that you will study half an hour a day for this course is .1, and the probability
that you will pass if you do study that much is .8, the probability that you will study that much and pass can be
calculated as follows:

.1 * .8

## [1] 0.08

Exercise 7
Say the probability that you will fail if you don’t study that much is .75. What’s the probability that you will

study and fail? What’s the probablity that you will not study and pass?
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Bayes’ theorem, in its simplest formulation, is:

P(H |E) = P(E|H)P(H)
P(E)

(7)

For instance suppose that our evidence E is that you passed the exam, and I’m interested in the conditional
probability of the hypothesis H that you in fact studied hard based on this evidence. Suppose further that 40%
students pass, and the probabilities of studying hard and passing if you do are as before (.1 and .8). The required
conditional probability can be calculated like this (for clarity, we play with variable assignents in the process):

pass <- .4
passIfStudy <- .8
study <- .1
studiedIfPassed <- (passIfStudy * study) / (pass)
studiedIfPassed

## [1] 0.2

Now, consider two categorical variables and what a two-way probability distribution for them specifies. Let’s
take the example from Kruschke:

• The main cells contain joint probabilities.
• The marginal probabilities are of the form p(e) =

∑
hp(e,h) or p(h) =

∑
e p(e,h) and are used in normaliza-

tion for calculating conditional probabilities.
• In continuous cases: p(r, c) is a pdf (probability density function, the derivative of cumulative probability),

and the summation is an integral, p(r) =
∫

dcp(r, c), where p(r) is also a pdf.
Conditional probability can be though of in terms of rows and columns. In a discrete case, we have:

P(c|r) = P(r, c)∑
c⋆ P(r, c⋆)

=
P(r, c)
P(r)

(8)

In the continuous case, this becomes:

P(c|r) = P(r, c)∫
dcP(r, c)

=
P(r, c)
P(r)

(9)

In this setup, the formulaic version of Bayes’ rule is:

P(c|r) =
P(r |c)p(c)∑

c⋆ P(r |c⋆)P(c⋆)
(10)

A tabular intuition behind this can be illustrated as follows:
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Exercise 8
Suppose the prior probability of a student liking statistical programming is 0.3. The probability that someone

who passed this course likes statistical programming is .6. Moreover, the prior probability of passing the course is
.4. What’s the probability that someone who likes statistical programming passes the course?

1.4 Prior, likelihood and posterior

Read/watch first
• Bayesian statistics the fun way (Will Kurt), Chapters 8.
• Statistical rethinking (Richard McElreath), Section 2.2., introudction to Chapter 3 (before Section 3.1)

Recall the following terminology related to Bayes’ Theorem:

P(H |E)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P(E|H)

prior︷︸︸︷
P(H)

P(E)︸︷︷︸
normalizationfactor/baserate

(11)

Let’s follow the example used in Ch. 8 of the book:

You come home from work one day and find your window broken, your front door open, and your
laptop missing. Your first thought is probably "I’ve been robbed!".

We need to evaluate the probability of your hypothesis given the evidence. First, we need the likelihood: the
probability of the evidence assuming the hypothesis. The example goes: say it’s 1/3, and say the prior probability
of being robbed is 1/1000. Unnormalized posterior is the prior times likelihood.

likelihood <- 3/10
prior <- 1/1000
posteriorUnnormalized <- likelihood * prior
posteriorUnnormalized == 3/10000

## [1] TRUE

The key fact about unnormalized posterior is that it is proportional to the normalized posterior:

posterior ∝ likelihood× prior

We can now easily inspect the impact of the choice of normalization factor on the posterior. The book takes 4
values. We’ll take more and visualise.

base <- seq(0,1, by = 0.01)
posterior <- posteriorUnnormalized/base

table <- data.frame(base = base,
posterior = posterior)

#put together with format: column name = data
ggplot(table, aes(x = base, y = posterior))+ #set up
geom_line()
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One key lesson is that the posterior probability is highly sensitive to the base rate. So we’d better think hard
about how we choose it. One way to go is to consider alternative hypotheses. Say here we have one, HA: you left
the door unlocked, you left your laptop at work, and kids broke the window with a ball. The probability of your
evidence given this hypothesis is pretty much 1. If H and HA are exclusive and jointly exhaustive, the law of total
probability say:

P(E) = P(E|H)P(H) + P(E|HA)P(HA) (12)

We need one more thing: P(HA) We’re invited to think of this three-fold alternative explanation as follows.
The probability of a ball breaking the window is 1/2000, the probability of leaving door unlocked is 1/30 and the
probability of leaving the laptop at work is 1/365. Supposing these events are independent, the probability of the
whole alternative hypothesis is the result of multiplying these values.

HA <- 1/2000 * 1/30 * 1/365
HA == 1/21900000

## [1] TRUE

HA

## [1] 4.56621e-08

The unnormalized posterior probability for HA is:

EifHA <- 1
posteriorEifHAunnormalized <- EifHA * HA
posteriorEifHAunnormalized

## [1] 4.56621e-08

It is the same as the prior of HA, because the corresponding likelihood is unexcitingly 1.
One thing we can look at is the ratio of two unnormalized posteriors:
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ratio <- posteriorUnnormalized / posteriorEifHAunnormalized
ratio == (3/10000) / (1/21900000)

## [1] TRUE

ratio

## [1] 6570

It indicates how many times better H explains the evidence than HA.
Now let’s plug the values to LOTP to calculate the base and use it with Bayes theorem to calculate the posterior

probability of H (and the posterior probability of HA).

base <- posteriorUnnormalized + posteriorEifHAunnormalized
posterior <- posteriorUnnormalized/base
posteriorHA <- posteriorEifHAunnormalized/base
posterior

## [1] 0.9998478

posteriorHA

## [1] 0.0001521838

Exercise 9
Extend the previous situation with a second alternative hypothesis HB which says that your annoying brother

decided to play a stupid joke on you. Say your prior of HB is .05, and the probability that he’d hide your laptop,
break the window and leave the door unlocked if he wanted to play a stupid joke on you is .001. What are the
posterior probabilities of all the hypotheses involved now, rounded to three digits?

Your posteriors for H , HA and HB should be, respectively:

## [1] 0.8570 0.0001 0.1428

One advantage of working with grid approximations instead of beta functions is flexibility when it comes to
the scale of the distribution. For instance, what if for some reason your prior looks more like a triangle?

# define bernoulli likelihood function
bernoulliLikelihood <- function(theta, data) {

# `theta` = success probability parameter ranging from 0 to 1
# `data` = the vector of data (i.e., a series of 0s and 1s)
n <- length(data)
return(thetaˆsum(data) * (1 - theta)ˆ(n - sum(data)))

}

smallData <- rep(0:1, times = c(4, 6)) #6 heads in 10 tosses.

#possible parameters
theta = seq(from = 0, to = 1, by = .001)

#triangular sequence of values
prior = c(seq(from = 0, to = 1, length.out = 501),

seq(from = 0.998, to = 0, length.out = 500))
prior <- prior / sum(prior) # we need to rescale the shape, so

# that the values sum up to 1

sum(prior) #check if this worked

## [1] 1

#now the likelihood function for our data and the possible parameters
likelihood <- bernoulliLikelihood(theta = theta, data = smallData)

#find out the numerator for Bayes theorem
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normalizationFactor <- sum(prior * likelihood)

#now use Bayes theorem
posterior <- (prior * likelihood) / normalizationFactor

#put them together
table <- data.frame(theta, prior, likelihood, posterior)

#now we convert this to long format for plotting
tableLong <- table %>% gather(key, value, -theta)

#the key column has to be made a factor with
#three levels in appropriate order now
tableLong$key <- factor(tableLong$key,

levels = c("prior", "likelihood","posterior"))

ggplot(tableLong, aes(x = theta, ymin = 0, ymax = value)) +
geom_ribbon(fill = "grey67") +
scale_x_continuous(expression(theta), breaks = seq(from = 0, to = 1, by = .2)) +
ylab("probability density") +
facet_wrap(~key, scales = "free_y", ncol = 1)+#note this separates plots by key
theme_bw()
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Exercise 10
Now work with the same grid for theta, but suppose your unnormalized prior is flat at 1 up to 0.3, then flat at 3

up to 0.7, and then flat at 2 up to 1. Run the same analysis but suppose you observed 24 heads in 44 tosses.

In general, bayesian model specifies:

• P(data values|parameter values) (likelihood)
• P(parameter values) (prior)

and then the Bayesian calculation results in a posterior.

P(parameter values|data values)
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Let’s look at Kruschke’s tabular presentation of this:

Let’s think again about the Bernoulli setup. While this is not really about coins (rather it’s about any chances
that you want to estimate if individual outcomes are binary and cases are independent), it makes sense to abstract
from particularities and imagine that you’re tossing a coin with an unknown parameter θ, and want to estimate θ.
What you observe is the results of particular tosses. Say you toss a coin once, and get the data γ = 1 (heads) or
γ = 0 (tails). Clearly:

• P(γ = 1|θ) = θ.
• P(γ = 0|θ) = 1−θ.

These two can be combined into a single formula:

P(γ |θ) = θγ (1−θ)(1−γ). (13)

Now say you toss the coin multiple times and let the outcome of the i-th flip be γi , think data= γi .

P(γi) =
∏
i

P(γi |θ) (14)

=
∏
i

θγi (1−θ)(1−γi ) (15)

= θ
∑

i γi (1−θ)
∑

i (1−γi ) (16)

= θ#heads(1−θ)#tails (17)

Let’s take an unrealistically simple case of a mystery coin in which after a fair draw of one of two biased coins,
with biases 0.4 and 0.6, the coin is tossed and you’re supposed to have some distribution over the possible biases
after you observe the result.

• The only candidate parameters are 0.4 and 0.6.
• Your prior gives probability of .05 to each of them, as the draw of the coin is fair.
• Say you toss five times and observe γ = 1, one head heads.

you need to describe your prior, calculate the likelihood and use these to calculate the posterior. First, let’s do
this in slow motion.

theta <- c(0.4, 0.6) #possible parameter values
priorTheta <- c(0.5,0.5) #priors assigned to them
data <- c(1,0,0,0,0) #1 heads with five tosses
z = sum(data) # number of 1's in Data
N = length(data) #number of tosses

# Compute the Bernoulli likelihood at each value of Theta:
pDataIfTheta <- dbinom(z,N,theta)
# Compute the probability of the evidence and
# the posterior via Bayes' rule:
pData <- sum(pDataIfTheta * priorTheta)
pThetaIfData <- pDataIfTheta * priorTheta / pData

#check the posteriors add to 1
sum(pThetaIfData)

## [1] 1
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#put together
table <- data.frame(theta, priorTheta,

pData, pDataIfTheta, pThetaIfData)

#plot of the prior
prior <- ggplot(table, aes(x = theta, y = priorTheta))+

geom_bar(stat="identity", alpha = 0.8)+
scale_x_continuous(breaks = theta)+theme_tufte()+ylim(c(0,1))+ggtitle("Prior")

#plot of the likelihood
likelihood <- ggplot(table, aes(x = theta, y = pDataIfTheta))+

geom_bar(stat="identity", alpha = 0.8)+
scale_x_continuous(breaks = theta)+
theme_tufte()+ylim(c(0,1))+ggtitle("Likelihood")

#plot of the posterior
posterior <- ggplot(table, aes(x = theta, y = pThetaIfData))+ #set up
geom_bar(stat="identity", alpha = 0.8)+ #barplot layer
scale_x_continuous(breaks = theta)+
theme_tufte()+ylim(c(0,1))+ggtitle("Posterior")

#convert the table to graphics, transpose for readability
tableGG <- ggtexttable(t(round(table,3)))

#plot together
ggarrange(prior, likelihood, posterior, tableGG)
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Exercise 11
Run a similar analysis for the mystery coin, but this time suppose the possible biases are 0.4,0.5, and 0.6 and

.8, your priors for these biases are .1, .3, .4 and .2, and you toss 15 times and observe γ = 6, six heads.
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Exercise 12
This is a variation on the globe scenario from Statistical rethinking, Section 2.2. The original story goes:

Suppose you have a globe representing our planet, the Earth. This version of the world is small enough
to hold in your hands. You are curious how much of the surface is covered in water. You adopt the
following strategy: You will toss the globe up in the air. When you catch it, you will record whether
or not the surface under your right index finger is water or land. Then you toss the globe up in the air
again and repeat the procedure.

Now, suppose there are two globes, one for Earth and one for Mars. The Earth globe is 65% covered in water.
The Mars globe is 95% land. One of these globes — you don’t know which — was tossed in the air and produced
a “land” observation. Assume that each globe was equally likely to be tossed.

• Calculate the posterior probability that the globe was the Earth.
• What is this probability if Mars is completely covered by land?
• What is this probability if Mars is completely covered by land, the Earth is 70% covered in water, and its

chance of being chosen is .4?

Baby panda born in Malaysia in 2018

Exercise 13
Let’s get serious. Pandas! Suppose there are two species of panda bear. Both are equally common in the wild

and live in the same places. They look exactly alike and eat the same food, and there is yet no easy way to tell them
apart. They differ in their family sizes. Assume that whether a subsequent birth is that of twins does not depend
on whether the previous one was that of twins.

• Species A gives birth to twins 10% of the time, otherwise birthing a single infant.
• Species B births twins 20% of the time, otherwise a birthing single infant.

You manage a captive panda breeding program.

1. You have a new female panda of unknown species, and she has just given birth to twins. What is the
probability that she belongs to species A?

2. What is now the probability that her next birth will also be twins?
3. The same panda mother has a second birth and it is not twins, but a singleton infant. Compute the posterior

probability that this panda is species A.

Exercise 14
Now a veterinarian comes along who has a new genetic test that she claims can identify the species of our

mother panda. But the test is imperfect:

• The probability it correctly identifies a species A panda is 0.8.
• The probability it correctly identifies a species B panda is 0.65.
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The vet administers the test to your panda and tells you that the test is positive for species A.

1. Ignore your previous information from the births and compute the posterior probability that your panda is
species A.

2. Redo your calculation, now using the birth data from the two births as well.

1.5 Beta priors and Bayesian inference

Read/watch first
• Bayesian statistics the fun way (Will Kurt), Chapter 9.
• Statistical rethinking (Richard McElreath), Sections 2.2, 2.3.

Let’s go through the C-3PO example.

When Han Solo, attempting to evade enemy fighters, flies the Millennium Falcon into an asteroid field,
the ever-knowledgeable C-3PO informs Han that probability isn’t on his side. C-3PO says, “Sir, the
possibility of successfully navigating an asteroid field is approximately 3,720 to 1!” “Never tell me
the odds!” replies Han.

Never tell me the odds!

So how is C-3PO to update his pessimistic priors with the information that Han is a badass? In our terminology,
C-3PO prior takes the odds of succeeding to be 1/3720. This isn’t enough to uniquely determine the beta function,
because it’s unclear how much data C-3PO had to analyze. Was it information about 3721 attempts, only one of
which succeeded, or was it, say, information of 7442 attempts, two of which succeeded, or. . . ? Let’s follow the
author supposing it was the latter. So here’s the distribution. Note this time we do not use grid approximation, but
instead, set up a dummy plot p and then add to it the plot of a pre-defined function directly.

p <- ggplot(data = data.frame(probability = seq(0:0.003)),
mapping = aes(x = probability))

c3po <- function(p) dbeta(p,2,7740) #define density as a function of
#probability only.

p + #basic layer
stat_function(fun=c3po)+ #add the function
xlim(c(0,0.001))+ #limit the x axis
ylab("density")+theme_tufte()

# theme_tufte(): I changed the theme to show you some possibilities
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Now, let’s visualise our prior in Han’s badassery, the odds of his survival being 20000/1.

p <- ggplot(data = data.frame(probability = seq(0:1)),
mapping = aes(x = probability))

han <- function(p) dbeta(p,20000,1)

p +
xlim(c(0.9995,1))+

stat_function(fun=han)+
ylab("density")+theme_bw()
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Now here’s the key move in building the posterior:

Beta(aposterior,bposterior) = Beta(alikelihood + aprior,blikelihood + bprior) (18)

In our case, aposterior = 20002 and bposterior = 7741. Let’s visualise this posterior beta and find the center of
this distribution.
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p <- ggplot(data = data.frame(probability = seq(0:1)),
mapping = aes(x = probability))

posterior <- function(p) dbeta(p,20002,7401)

p +
xlim(c(.6,.8))+

stat_function(fun=posterior)+
ylab("density")+theme_dark()

ps <- seq(0,1,by = 0.0001)
dBETA(ps,20002,7401)[-1]

## $mean
## [1] 0.7299201
##
## $var
## [1] 7.193722e-06
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Exercise 15
Modify this scenario a bit. What would your posterior look like and where would it center be if (i) C-3PO only

knew of 450 attempts with 2 successes? (ii) Additionally, your belief in Han’s badassery had odds 2000/1? You
might need to change the x limits to make the plots sensible. Add plot titles with ggtitle().

For a slightly different perspective, let’s walk through the water example from Statistical rethinking, Section
2.2. Let’s recall the story:

Suppose you have a globe representing our planet, the Earth. This version of the world is small enough
to hold in your hands. You are curious how much of the surface is covered in water. You adopt the
following strategy: You will toss the globe up in the air. When you catch it, you will record whether
or not the surface under your right index finger is water or land. Then you toss the globe up in the air
again and repeat the procedure.
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If the actual coverage is 0.5, you toss the globe 9 times, what’s the probability of seeing six W ’s can be
calculated using the binomial distribution:

dbinom(6, size = 9, prob = 0.5)

## [1] 0.1640625

Here’s how we can use grid approximation to compute the posterior distribution over possible parameters, this
should be already familiar. We then plot the approximation as a line, but emphasizing that we calculated this only
in 20 points by putting points in the visualization as well.

# define grid
ps <- seq(from=0 , to=1 , length.out=20)
# define prior
#(note it's not really a probability, we'll standardize later)
prior <- rep(1, 20)
# compute likelihood at each value in grid
likelihood <- dbinom( 6 , size=9 , prob = ps )
# compute product of likelihood and prior (unstandardized prior)
unPosterior <- likelihood * prior
# standardize the posterior, so it sums to 1
posterior <- unPosterior / sum(unPosterior)

#put together
table <- data.frame(theta = ps,posterior)

#plot using ggplot
ggplot(table, aes(x = theta, y = posterior)) +

geom_line() + geom_point()+
scale_x_continuous(expression(theta), breaks = seq(from = 0, to = 1, by = .2)) +
ylab("probability") + theme_bw()
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Exercise 16
Work with the globe example. Calculate the posterior distribution for a uniform prior, for three sets of obser-

vations:
• (A) W, W, W
• (B) W, W, W, L
• (C) W, L, W, L, W, W
Please:
• Approximate for 1000 points.
• Don’t use points, just lines.
• Use ggarange (google) to put three plots in one row.
• Use ggtitle to add appropriate titles.
• Use tufte theme.

Exercise 17
Calculate the posterior distribution using grid approximation for the same nine observations for a potential

prior that assigns 0.3 to all values below 0.6 and 1 to all the other values. Use "ifelse" (you can google its use).
Approximate for 50 points.

Now, let’s switch back to thinking in terms of functions rather than grid approximations. What if your prior
is approximated by, say a uniform distribution and we want to run our estimation of the posterior using a fairly
transparent formula notation in a way that easily generalizable to functions that are hard to work with analytically?
Here’s a solution that uses the rethinking package. The cost is, however, it approximates the posterior using the
normal distribution.

globe <- map(
alist(
w ~ dbinom(9,p) , # binomial likelihood
p ~ dunif(0,1) # uniform prior
) ,
data=list(w=6) )
# display summary of quadratic approximation

# columns: mean / sd / 5.5% / 94.5%
precis(globe) %>%

kable("latex", booktabs = T, linesep = "") %>%
kable_styling(latex_options = c("HOLD_position", "striped"),font_size = 9)

x

0.6666666

x

0.1571338

x

0.4155365

x

0.9177968

The interpretation: assuming the posterior is normal, it is maximized at 0.67, and its standard deviation is 0.16.
Normal approximations for such cases get better with sample size (see Section 2.4.2 of Statistical Rethinking for a
bit more details).

1.6 Sampling from the posterior and intervals

Read/watch first
• Statistical rethinking (Richard McElreath), Sections 3.1, 3.2.
• Doing Bayesian Data Analysis, John Kruschke, chapters 2, 3, 4.
It’s a bit of overkill do to posterior sampling for Bernoulli trials, but our point we’ll be conceptual. Keep in

mind that simulations are very handy when it comes to more complicated distributions, combining models, and
more complicated predictions.
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First, let’s play around with a grid approximation, create and plot a sample of posterior probabilities. We’ll use
the example involving nine tosses of a globe. Note each parameter has the probability of being drawn obtained by
the bayesian calculation of the posteriors.

set.seed(666)
ps <- seq(from=0 , to=1 , length.out=1000)
prior <- rep(1 , 1000)
likelihood <- dbinom( 6 , size=9 , prob=ps)
posterior <- likelihood * prior
posterior <- posterior / sum(posterior)

samples <- sample(ps, prob=posterior , size=1e4 , replace=TRUE)

points <- ggplot()+geom_point(aes(x = 1:1e4, y=samples),
col = "skyblue", alpha = 0.35)+

theme_tufte()+xlab("sample no.")+ylab("parameter value")

density <- ggplot()+geom_density(aes(x=samples))+theme_tufte()+
xlab("parameter value")

ggarrange(points, density, ncol = 2)
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Such samples are useful for various approximations. For instance, we might estimate the probability that the
proportion of water is less than 0.6 given our nine observations, six of which were that of water. Make sure you
understand what the brackets do. First, let’s do this analytically: basically we sum the posterior probabilities for
parameter values less than 0.6.

sum(posterior[ ps < 0.6 ])

## [1] 0.3825314

Now, we approximate the answer by checking what proportion of parameters in our sample in fact is less than
0.6.

sum(samples < 0.6) / 1e4

## [1] 0.3773
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Pretty close, right?

Exercise 18
In the same setup, first calculate analytically and then approximate the probability that the proportion of water

is strictly between .4 and .8.

Now we can think about intervals. An interval of posterior probability is called posterior interval. For instance,
you might want to know the parameter value such that 70% of the posterior is below it. Note that 70% is the
proportion of the area under the density curve that is below .8.

quantile(samples, 0.8)

## 80%
## 0.7587588

#extract numeric account from the plot and use to shade the interval
d <- ggplot_build(density)$data[[1]]
density+geom_area(data = subset(d, x < 0.758),

aes(x=x, y = y), fill="skyblue", alpha = 0.4)
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Exercise 19
Calculate and plot the middle 50% interval for the same density.

These are percentile intervals they sort of make sense when you’re summarizing data for fairly symmetric
distribution.

Percentile intervals are contrasted with the highest posterior density intervals (HPDI). The HPDI is the narrow-
est interval containing the specified probability mass of the posterior distribution. If you think about it, there must
be an infinite number of posterior intervals with the same mass. But if you want an interval that best represents the
parameter values most consistent with the data, then you want the densest of these intervals. It’s only a bit different
in this particular case:
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HPDI( samples , prob=0.5 )

## |0.5 0.5|
## 0.5745746 0.7657658

density+geom_area(data = subset(d, x > 0.574 & x < 0.765),
aes(x=x, y = y), fill="skyblue", alpha = 0.4)
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However, they might be quite different if the distribution is more assymetric.

ps <- seq( from=0 , to=1 , length.out=1000 )
prior <- rep(1,1000)
likelihood <- dbinom( 3 , size=3 , prob=ps )
posterior <- likelihood * prior
posterior <- posterior / sum(posterior)
samples <- sample(ps , size=1e4 , replace=TRUE , prob=posterior)

density <- ggplot()+geom_density(aes(x=samples))+theme_tufte()+
xlab("parameter value")

quantile(samples, c(0.25,0.75))

## 25% 75%
## 0.7047047 0.9309309

#In fact, you can use PI and HDPI from rethinking

PI(samples, prob = 0.5)

## 25% 75%
## 0.7047047 0.9309309

HPDI(samples, prob=0.5)

## |0.5 0.5|
## 0.8408408 0.9989990
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d <- ggplot_build(density)$data[[1]]
density50PI <- density + geom_area(data = subset(d, x > 0.704 & x < 0.93),

aes(x=x, y = y), fill="skyblue", alpha = 0.4)+ggtitle("50% PI")

density50HPDI <- density + geom_area(data = subset(d, x > 0.840 & x < 0.998),
aes(x=x, y = y), fill="skyblue", alpha = 0.4)+ggtitle("50% HPDI")

ggarrange(density50PI, density50HPDI, ncol=2)
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Exercise 20
Start with the same prior, but now imagine you observed water 10 out of 11 times. Sample from the posterior,

calculate 80

The key point: HDPI seems better at capturing the center of the mass of a distribution. Although note that if
the type of the interval makes a huge difference, you should report both and indicate the difference.

In fact, it makes sense to talk about HDI of other distributions as well. Here is another way to conceptualize
this. Highest density interval is an interval (or intervals) that spans most (say, 95%) of the distribution such that
every point inside the interval(s) have higher credibility than any point outside of it. Here’s a rather uneven example
from Kruschke’s book.
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Let’s learn another way to find and plot the HDI of a given vector. We’ll work with a longitudinal set connecting
heights to earnings coming from the modelr package.

?heights # find the information about the dataset

## uruchamianie serwera httpd dla pomocy ... wykonano

heights <- as.data.frame(heights) # convert to a standarda data frame format
# inspect the first few lines to get a feel for the dataset,
# note the pipe operator (google it and learn to use it)

head(heights) %>% kable("latex", booktabs = T, linesep = "") %>%
kable_styling(latex_options = c("HOLD_position", "striped"),font_size = 9)

income height weight age marital sex education afqt

19000 60 155 53 married female 13 6.841
35000 70 156 51 married female 10 49.444

105000 65 195 52 married male 16 99.393
40000 63 197 54 married female 14 44.022
75000 66 190 49 married male 14 59.683

102000 68 200 49 divorced female 18 98.798

# now, let's find the 95% HDI of the heights
# note I used kable to plot a nice table, you don't have to do this

mode_hdi(heights$height, .width = 0.95) %>%
kable("latex", booktabs = T, linesep = "") %>%
kable_styling(latex_options = c("striped", "HOLD_position"),font_size = 9)

y ymin ymax .width .point .interval

66 60 74 0.95 mode hdi

#now, plot the histogram with HDI
heights %>%

ggplot(aes(x = height, y = 0))+
stat_histinterval(point_interval = mode_hdi, .width = .95,

fill = "grey67", slab_color = "grey92",
breaks = 40, slab_size = .2, outline_bars = T)+

ylab("density")+theme_bw()
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## Warning: Using the ‘size‘ aesthietic with geom_segment was deprecated in ggplot2 3.4.0.
## i Please use the ‘linewidth‘ aesthetic instead.
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Exercise 21
Calculate and visualize the 90

sum(is.na(heights$weight)) # check how many you're removing

## [1] 95

weights <- heights[!is.na(heights$weight),]

And your result should look like this:

y ymin ymax .width .point .interval

180 118 250 0.9 mode hdi
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It will be useful to have a function that calculates HDI for a given distribution. For technical reasons, it’s easier
to do so for the quantile function (cumulative inverse probability). The function goes like this. You don’t need to
understand it, but if you’re curious feel free to go over it:

hdi_of_icdf <- function(name, width = .95, tol = 1e-8, ... ) {
# Arguments:
# `name` is R's name for the inverse cumulative density function
# of the distribution.
# `width` is the desired mass of the HDI region.
# `tol` is passed to R's optimize function.
# Return value:
# Highest density iterval (HDI) limits in a vector.
# Example of use: For determining HDI of a beta(30, 12) distribution, type
# `hdi_of_icdf(qbeta, shape1 = 30, shape2 = 12)`
# Notice that the parameters of the `name` must be explicitly stated;
# e.g., `hdi_of_icdf(qbeta, 30, 12)` does not work.
# Adapted and corrected from Greg Snow's TeachingDemos package.
incredible_mass <- 1.0 - width
interval_width <- function(low_tail_prob, name, width, ...) {
name(width + low_tail_prob, ...) - name(low_tail_prob, ...)

}

opt_info <- optimize(interval_width, c(0, incredible_mass),
name = name, width = width,
tol = tol, ...)

hdi_lower_tail_prob <- opt_info$minimum

return(c(name(hdi_lower_tail_prob, ...),
name(width + hdi_lower_tail_prob, ...)))

}

With this function ready, we can go back to our Star Wars example and calculate and plot the HDIs. Let’s do
this for one of the posteriors.

#this was our posterior
posteriorI <- function(p) dbeta(p,20002,449)
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#note shape parameters are just a and b, and
#that we used qbeta for the quantile function
hdiI <- hdi_of_icdf(qbeta, shape1 = 20002, shape2 = 449, width = .95)

#print the HDI limits:
hdiI

## [1] 0.9760250 0.9800389

#now the plot
#dummy background
p <- ggplot(data = data.frame(probability = seq(0:0.003)),

mapping = aes(x = probability))

#layers
p + xlim(c(0.96,.99)) +

stat_function(fun=posteriorI)+
ylab("density")+theme_bw()+

ggtitle("Posterior beta for C-3PO prior odds=2/448")+
#so far nothing new
geom_vline(aes(xintercept = hdiI),

lty = 2, alpha = 0.5) + #add dashed lines
geom_segment(aes(x = hdiI[1], xend = hdiI[2], y = posteriorI(hdiI[1]),

yend = posteriorI(hdiI[1])),
arrow = arrow(length = unit(.15, "cm"),

ends = "both",
type = "closed"), alpha = 0.4)+ #arrow

annotate("text", x = mean(hdiI), y = posteriorI(hdiI[1])*1.15,
label = "95% HDI") +theme_tufte() #text
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Posterior beta for C−3PO prior odds=2/448

Exercise 22
Calculate and plot 90% HDI for posteriorII as defined in the Star Wars example. Remember to change the

annotation to "90%", move the annotation if need be.
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posteriorII <- function(p) dbeta(p,2002,449) #recall

1.7 Estimation and prediction

Let’s work with our example of nine tosses of a globe.

ps <- seq( from=0 , to=1 , length.out=1000 )
prior <- rep(1,1000)
likelihood <- dbinom( 6 , size=9 , prob=ps )
posterior <- likelihood * prior
posterior <- posterior / sum(posterior)
samples <- sample(ps, size=1e4 , replace=TRUE , prob=posterior)

Suppose we are asked for a point estimate of the water coverage. One thing we could do is to report the
parameter with the highest posterior probability, maximum a posteriori estimate, MAP. If we have the posterior
probabilities calculated analytically, we can do this analytically.

ps[which.max(posterior)]

## [1] 0.6666667

If, however, we want to rely only on a sample from the posterior distribution, we can use chainmode to approx-
imate this value.

chainmode(samples)

## [1] 0.6714762

You might be tempted to report mean or median of the samples:

mean(samples)

## [1] 0.6366261

median(samples)

## [1] 0.6466466

In this case there isn’t too much of a difference. But let’s look at an assymetric example.

ps <- seq(from=0 , to=1 , length.out=1000)
prior <- rep(1,1000)
likelihood <- dbinom(3 , size=3 , prob=ps) #3 out of 3 times water!
posterior <- likelihood * prior
posterior <- posterior / sum(posterior)
samples <- sample(ps, size=1e5 , replace=TRUE , prob=posterior)

density <- ggplot()+geom_density(aes(x=samples))+theme_tufte()+
xlab("parameter value")

density <- ggplot()+geom_density(aes(x=samples))+theme_tufte()+
xlab("parameter value")

density+
geom_vline(xintercept = chainmode(samples), lty = 2, color = "skyblue")+
geom_text(aes(x=chainmode(samples)-0.02, y=1), label="estimated mode",

color="skyblue", angle=90)+
geom_vline(xintercept = mean(samples), lty = 3,

color = "grey")+
geom_text(aes(x=mean(samples)-0.02, y=1), label="mean", color="grey", angle=90)+
geom_vline(xintercept = median(samples), lty = 4, color = "orange2")+
geom_text(aes(x=median(samples)-0.02, y=1), label="median", color="orange2",

angle=90, alpha = 0.6)
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Also, the choice of the estimation method depends on how you’re penalized for being wrong! Give me your
estimate e of the proportion of water. Say the real proportion is p. One loss function we could use is that the
penalty is proportional to how far e and p are, that is to the absolute value of e − p.

Now here’s the trick. When you estimate using this loss function, you use your posterior to figure out the
parameter value that you expect to minimize this distance. Let’s calculate this expected loss. The idea is, for each
particular possible parameter value, we measure its absolute distance from our estimate. Then we take a weighted
average of these distances, where for each parameter, its corresponding weight is our posterior probability of that
parameter. For instance, if our estimate is .6, our expected loss is:

e <- .6 #estimate
sum(posterior*abs(e-ps))

## [1] 0.231442

But we want to minimize the loss, so we have to calculate the loss for all possible estimates that we could give,
and then choose the estimate which results in a minimial loss. So, basically, we need to repeat the calculations for
each potential estimate. One way to do this is to use “for”. There is also a trick that uses “sapply”, which is less
intuitive, but results in a one-liner.

loss <- NULL #initiate empty list
for (i in 1:length(ps)){

loss[i] <- sum(posterior*abs(ps[i]-ps))
}

#alternatively
loss <- sapply( ps, function(e) sum( posterior*abs( e - ps ) ) )

ps[which.min(loss)]

## [1] 0.8408408

median(samples) #this turns out to be pretty much the posterior median

## [1] 0.8398398
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Importantly, different choices of the loss function lead to different estimates. If, for instance, we take the
quadratic loss (e−p)2, then it is the mean that minimizes the expected loss. Practical considerations might suggest
using a different loss function (for instance, if you incorrectly predict a high probability of a hurricane might result
in other losses than if you incorrectly predict a low probability thereof).

Exercise 23
Suppose the globe tossing data had turned out to be 8 water in 14 tosses. Construct the posterior distribution,

using grid approximation. Use the same flat prior as before. Use set.seed(666) first for replicability.

1. How much posterior probability lies below p = 0.3?
2. How much posterior probability lies above p = 0.9?
3. How much posterior probability lies between p = 0.2 and p = 0.8?
4. 20% of the posterior probability lies below which value of p?
5. 20% of the posterior probability lies above which value of p?
6. Which values of p contain the narrowest interval equal to 66% of the posterior probability?
7. Which values of p contain 66% of the posterior probability, assuming equal posterior probability both below

and above the interval?

Bayesian models are generative: given a parameter the likelihood defines a distribution of possible observations
that we can sample from, to simulate observation. For instance, if we toss the globe two times, there are three
possible observations (0 water, 1 water, 2 water). Given a particular parameter assumed, say 0.6, we can calculate
the probability of each of these possible outcomes:

dbinom(0:2,2,0.66)

## [1] 0.1156 0.4488 0.4356

Now, we can also simulate random data that is obtained by employing these probabilities. Say we want to
simulate one test. That is: we “toss” the globe twice and “write down” the number of times we observed water.

rbinom(1, size = 2, prob = 0.66)

## [1] 2

We can also simulate repeating a series of experiment, each time tossing the globe twice and writing down the
number of times we observed water. Say we do this ten times.

rbinom(10 , size=2 , prob=0.66)

## [1] 2 1 1 1 0 1 2 2 2 1

Let’s generate dummy data by simulating the experiment 10000 times and look at the frequencies of the possible
outcomes.

dummy <- rbinom( 1e5 , size=2 , prob=0.66)
table(dummy)/1e5

## dummy
## 0 1 2
## 0.11456 0.45211 0.43333

The key observation is that with a sufficiently large dummy set, the frequencies approximate the probabilities
we obtained analytically.

Exercise 24
Simulate 1e5 experiments of nine tosses of the globe and plot them in a histogram.
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Now comes the trick. Instead of using a single assumed parameter, as we did for .6, we can use combine our
dummy dataset generation with our posterior distribution. This captures the idea that instead of knowing that the
parameter is .6 we only have some probability distribution for the potential parameters. That is, we combine two
sorts of uncertainty, propagating the parameter uncertainty as we come up with predictions. Instead of keeping the
probability fixed, we take our posterior sample (recall, it was obtained for the observation of 6 water out of 9, with
a flat prior), and for each of its elements, we run one experiment of nine observations and write down the number
of times we observed water (note the number of experiments is the same size as our posterior sample). We also
plot the histogram

w <- rbinom( 1e5 , size=9 , prob=samples)

Now, notice, there are three different distributions that we might be interested in. The distribution of the
posterior samples, whose density we have already plotted, which captures our posterior uncertainty. Then, we
might be interested in the distribution of potential outcomes assuming a particular point estimate (we just plotted
a histogram using .6). Finally, we might be interested in the distribution of potential outcomes not assuming any
particular point estimate, but using the complete information about our uncertainty about the parameter as captured
by the posterior sample. Let’s see a histogram:

strict <- ggplot()+geom_histogram(aes(x=dummy), bins = 10)+
scale_x_continuous(breaks = 0:9)+
theme_tufte()+xlab("outcome")+
ggtitle("Distribution assuming theta = .66")

ppd <- ggplot()+geom_histogram(aes(x=w), bins = 10)+
scale_x_continuous(breaks = 0:9)+
theme_tufte()+xlab("outcome")+
ggtitle("Posterior predictive distribution")

mean(dummy)

## [1] 1.31877

mean(w)

## [1] 5.72879

ggarrange(strict, ppd, ncol = 2)
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Note that the distributions are centered around pretty much the same mean, but they look quite different. The
one on the left is more centered and doesn’t incorporate our uncertainty about the parameter, and so might give us
a false sense of certainty, whereas the one that does incorporate the higher-order uncertainty is less self-confident,
but also more honest.

Exercise 25
Use our posterior predictive simulation to estimate the probability that the number of times you observe water

in a new experiment is strictly between 2 and 7. Then use the dummy data obtained assuming the parameter value
0.66. Then calculate this probability analytically using pbinom.

Exercise 26
Let’s start over. Suppose you know that a majority of the Earth’s surface is water, but not more. That is, use

a prior that is zero below p = 0.5 and a constant above p = 0.5. Suppose you observed water 6 out of 9 times.
Use set.seed(666) for replicability. We’ll investigate what difference the better prior makes, so run this along the
original case of flat prior.

1. Start with creating posterior samples for both priors (call them different names).
2. Calculate 90% HPDI for both posterior samples.
3. Plot densities of both posterior samples next to each other. Use xlim to make sure the x axis ranges from 0 to

1 in both cases and ylim to make both y axes range between 0 and 4. Use the trick we already used to shade
the HPDI areas that you already calculated.

4. Now construct the posterior predictive samples for both options. Plot them using histograms next to each
other.

5. Use the PPD to calculate the probability of observing 6 in nine tosses, do this first for the flat prior, then for
the informed one.

Exercise 27
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Let’s do the homework from Statistical rethinking. Load the data and take a look. These data indicate the
gender (male=1, female=0) of officially reported first and second born children in 100 two-child families.

How to read this? The first family in the data reported a boy (1) and then a girl (0). The second family reported
a girl (0) and then a boy (1). The third family reported two girls.

1. Calculate the posterior for a flat prior. Use lines to plot both the posterior and the likelihood on the same plot
(use color and different line type for the likelihood). Set seed to 666. Which p maximizes the likelihood?
Which p maximizes the posterior?

2. Use the sample function to draw 10,0000 random parameter values from the posterior distribution you calcu-
lated above. Use these samples to approximate the 50%, 89%, and 97% highest posterior density intervals.
Plot the density posterior sample with shaded 89% HPDI.

samples <- sample(ps, prob=posterior , size=1e5 , replace=TRUE)

HPDI(samples, .5)
HPDI(samples, .89)
HPDI(samples, .97)

density <- ggplot()+geom_density(aes(x = samples))+theme_tufte()

d <- ggplot_build(density)$data[[1]]
density+geom_area(data = subset(d, x < 0.6 & x > .505),

aes(x=x, y = y), fill="skyblue", alpha = 0.4)

3. Use rbinom to draw a random sample of 10000 observations of births out of 200, using the optimizing
parameter that you have found. Plot the density of this set adding a vline at 111. Does the model fit the data
nicely? That is, is the actual observation close to the middle of what the model predicts?

4. Now use the same method to compare 10,000 counts of boys from 100 simulated first borns only to the
number of boys in the first births. Use the same optimized parameter. How does the model look in this light?

5. The model assumes that sex of first and second births are independent. To check this assumption, focus
now on second births that followed female first borns. First you need to select these births using standard R
methods. For instance, if I want to randomly sample 100 natural numbers from the interval 1:10 twice and
then select those from the second sample for which the corresponding ones in the first sample were less than
3 I do this:

s1 <- sample(1:10,size = 100, replace = TRUE)
s2 <- sample(1:10,size = 100, replace = TRUE)
selected <- s2[s1<3]
selected

## [1] 7 8 5 10 10 7 7 7 5 2 5

Now, use the density plot with a vline to compare 10,000 simulated counts of boys to the number of boys born
in only those second births that followed girls. How does the model look in this light? Any guesses what is going
on?
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