
Chapter 1: data cleaning, wrangling &
visualization

Rafal Urbaniak and Nikodem Lewandowski

1 Data, tabulation and visualisation

Before you dive in, first load the libraries (if you need to install any, do this first):

library(modelr)
library(kableExtra)
library(ggplot2)
library(ggthemes)
library(dplyr)
library(knitr)
library(nycflights13)
library(forcats)
library(tidyverse)

1.1 Data: reading, cleaning, summarizing

The first thing to do when we start a data analysis, is to load the data (there are many easily googlable options
for this, depending on what file format you’re using). For now, let’s use a longitudinal set connecting heights
to earnings coming from the modelr package. It’s already loaded, and we start with reading about the data set
(sometimes, such information is available) and inspecting the first few lines (in our case, 10 of them). Then, it
might be worthwhile to look at the structure of the dataset.

#?heights # find the information about the dataset
(this will not show in PDF, check the help tab in RStudio)

heights <- as.data.frame(heights) # convert to a standard data frame format

str() function displays the structure of an R object
with that we can check some basic information about an object

str(heights) # number of variables, data types, column names etc.

’data.frame’: 7006 obs. of 8 variables:
$ income : int 19000 35000 105000 40000 75000 102000 0 70000 60000 150000 ...
$ height : num 60 70 65 63 66 68 74 64 69 69 ...
$ weight : int 155 156 195 197 190 200 225 160 162 194 ...
$ age : int 53 51 52 54 49 49 48 54 55 54 ...
$ marital : Factor w/ 5 levels "single","married",..: 2 2 2 2 2 4 2 4 4 4 ...
$ sex : Factor w/ 2 levels "male","female": 2 2 1 2 1 2 1 2 1 1 ...
$ education: int 13 10 16 14 14 18 16 12 12 13 ...
$ afqt : num 6.84 49.44 99.39 44.02 59.68 ...

now a more elegant tool
inspect the first few lines to get a feel for the dataset,
note the pipe "%>%" operator (google it and learn to use it)
note also I used kable to plot a nice table in the pdf file
you don't have to do this if you're working using an R script.

head(heights, n = 6) %>% kable("latex", booktabs = T, linesep = "") %>%
kable_styling(latex_options = c("striped", "HOLD_position")) %>%
kable_styling(font_size = 9)

1

income height weight age marital sex education afqt

19000 60 155 53 married female 13 6.841
35000 70 156 51 married female 10 49.444

105000 65 195 52 married male 16 99.393
40000 63 197 54 married female 14 44.022
75000 66 190 49 married male 14 59.683

102000 68 200 49 divorced female 18 98.798

We can view the means and medians of variables of interest as follows:

mean(heights$height)

[1] 67.10434

#if a varable has NAs, you might choose or need to ignore them with na.rm
median(heights$weight, na.rm=TRUE)

[1] 184

Note the use of the dollar sign between the data name and variable name. For data frames dollar sign enables a
choice of a particular column by its name.

We can select parts of the data by a logical condition, using square brackets appropriately. For instance, the
mean of weight for people with height>68 and the median of weight of people with height=69 can be obtained as
follows:

mean(heights$weight[heights$height > 68], na.rm=TRUE)

[1] 210.8534

#note double identity symbol for comparison
median(heights$weight[heights$height == 69], na.rm=TRUE)

[1] 190

Exercise 1
I now load the smallpox dataset for you. View 6 first entries and data structure, this should give you a feel for what the dataset is about. Note
that you have to set your working directory to the directory containing the teachingData folder (you can use setwd() function for that purpose).

smallpox <- read.csv("teachingData/CsvFiles/GlobalSmallpoxCases.csv",
header = TRUE)

Exercise 2
Display the head of the dataset.

Exercise 3
Note that one column name is informative but ugly. We can rename it, complete the following code to do so and view the dataset structure. Are
you sure you know why we used [4]?

names(smallpox)[4] <- "___"

Exercise 4
We don’t care about the code, complete the code to remove this column and view the head to make sure your move worked. Are you sure you
know why we used [,-2]?

2

___________ <- _________[,-2]

Exercise 5
View the mean and median of the cases variable.

Exercise 6
What are the mean and median occurrences of smallpox in years 1920-1930? Use & for conjunction in the logical condition.

Exercise 7
What are the means and medians for periods 1930-1950 and 1950-1970?

Criminology exercises

Exercise 8
I now load the DrunkAndDriving dataset for you. View 5 first entries and data structure, this should give you a
feel for what the dataset is about. Note that you have to set your working directory to the directory containing
the teachingData folder (you can use setwd() function for that purpose). Also, what is the purpose of "sep="
parameter?

drunkDriving <- read.csv("DrunkAndDrivingPoland.csv", sep = ";")

Exercise 9
Display the head of the dataset.

Exercise 10
Note that the first column name is informative but ugly. We can make it simpler, complete the following code to
do so and view the dataset structure. Are you sure you know why we used [1]?

names(drunkDriving)[1] <- "___"

Exercise 11
Proportions given in percentages are not very informative in this case, complete the code to remove this column
and view the head to make sure your move worked. Are you sure you know why we used [,-4]?

___________ <- _________[,-4]

3

Exercise 12
View the mean and median of the knownCases variable.

Exercise 13
What are the mean and median occurrences of known drunk and driving cases in years 2001-2006? Use & for
conjunction in the logical condition.

Exercise 14
What are the means and medians for periods 2001-2010 and 2011-2021? Is, according to this data, drunk driving
increasing or decreasing problem?

1.2 Basic plots with ggplot2

It is almost always useful to visualize the data, for various reasons. This action should precede any statistical
analysis or inference. Here is one simple method: scatterplot. It works for two variables. We will use one of the
most popular visualization packages in R, ggplot2. Let’s do this for height and weight in the heights dataset:

You can find a cheatsheet for using ggplot2, check out:
https://www.rstudio.com/resources/cheatsheets/

#specify the basics
ggplot(heights, aes(x = weight, y = height)) +
geom_point() # add a layer of points

Warning: Removed 95 rows containing missing values (‘geom_point()‘).

60

70

80

100 200 300 400 500
weight

he
ig

ht

Notice also that you got a warning: the dataset contained NAs. The points are a bit large, we will make them a
bit smaller and slightly transparent (alpha parameter) to better see how densely they occur. We also use the tufte
theme instead of the default ggplot theme:

4

#we first specify the basics
ggplot(heights, aes(x = weight, y = height)) +
geom_point(size = .9, alpha = .4)+
theme_tufte()# we add a layer of points

60

70

80

100 200 300 400 500
weight

he
ig

ht

To get more clarity, we can “shake” the points a bit with a jitter. Sometimes you need to get creative and play
around with the parameters to make the plot look nice.

ggplot(heights, aes(x = weight, y = height)) +
geom_jitter(size = .9, alpha = .15, width = 4, height = 1)+
theme_tufte()

50

60

70

80

100 200 300 400 500
weight

he
ig

ht

We can add lines to the plot. Sometimes, we add exact values, as when we already have some summaries.
To show you how to work with vectors I’ll give you a simple example, make sure you understand how the vector
constructions worked, observe the use of three different functions (“:” operator, rep(), seq()). I also use length
to make sure I created vectors of equal weight. Remember that you can always use “?” (e.g ?rep()) to check the
details about the R function in question.

5

years <- 2000:2020
amount <- c(14:18, rep(19,2), seq(19,2, length.out = 14))
length(years)

[1] 21

length(amount)

[1] 21

ggplot() + geom_line(aes(x= years, y = amount))+
theme_tufte()

5

10

15

2000 2005 2010 2015 2020
years

am
ou

nt

On some other occasions we want to focus on some statistics, such as mean. For instance, for heights we can
do this as follows:

ggplot(heights, aes(x= age, y = height))+
geom_jitter(width = 0.5, alpha = 0.2)+
stat_summary(fun=mean, colour="red", geom="line", aes(group = 1))+
theme_tufte()

6

60

70

80

48 51 54
age

he
ig

ht

Now we look at mpg dataset to illustrate how we can also color the points by grouping. Feel free to take a look
at its help description to see what data and variables it contains.

ggplot(mpg) + geom_point(aes(x = displ, y = hwy,
color = class), size = 2)+

theme_tufte()

20

30

40

2 3 4 5 6 7
displ

hw
y

class

2seater

compact

midsize

minivan

pickup

subcompact

suv

Observe the extreme outliers when it comes to fuel efficiency. Grouping by color makes it easy to see that these
are subcompact cars.

Exercise 15
Back to the smallpox dataset. Plot cases against years with a line. Use the tufte theme and color "skyblue".

7

Exercise 16
Plot income against education using the heights dataset. Use points and add a line representing the mean.

Exercise 17
In the heights dataset plot income versus education coloring by sex. Keep the mean lines (this time, don’t specify
group or color for the stat separately, but specify size = 2). Is there anything that you find striking?

Remember that mean might be a misleading indicator with outliers, so plot the same data with a median instead.

Another useful feature is splitting the plots by a categorical variable. For instance, for the mpg database we
can do:

ggplot(mpg) + geom_point(aes(x = displ, y = hwy), size = 0.6) +
facet_wrap(~ class, nrow = 2) + theme_tufte()

pickup subcompact suv

2seater compact midsize minivan

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

2 3 4 5 6 7

20

30

40

20

30

40

displ

hw
y

Exercise 18
Use the plot you developed for income by sex (median), but also now divide the plot by the marital status.FInd
parameters that make the plot look decent.

Notice how separated and divorced females fare similarly to males, single females are better off than married
females, and educated widowed females are doing pretty awesome (note however the potential impact of outliers
for this class).

Lines of another type result from smoothing. These, usually, will not be straight lines and they are useful if the
tendencies change non-linearly. Here’s an example:

ggplot(mpg,aes(x = displ, y = hwy)) +
geom_smooth(size=0.2)+geom_point()+theme_tufte()

8

20

30

40

2 3 4 5 6 7
displ

hw
y

Exercise 19
Plot income vs education by sex with smoothing.

Exercise 20
Look at the dataset on the eruptions of Old Faithful (google if you don’t know what that is). Prepare a scatterplot
of eruption times vs. waiting times. What strikes you?

Criminology exercises

Exercise 21
Drunk driving again, plot cases against years with a line. Use the tufte theme and color "skyblue".

Exercise 22
Create a scatterplot of the number of occurrences versus the month of the year using the NYPD dataset. Note that
the set is slightly more complicated, I will wrangle the data for you, so don’t stress (be sure to execute the given
code first!).

just run the code below
nypd$MONTH <- as.integer(format(nypd$OCCUR_DATE, "%m"))
nypd_monthly_counts <- nypd %>%

mutate(MONTH = format(OCCUR_DATE, "%Y-%m")) %>%
group_by(MONTH) %>%
summarise(OCCURRENCES = n()) %>%
ungroup()

use the nypd_monthly_counts as your table to create the requested plot:

____ <- ggplot(nypd_monthly_counts,) +

9

Exercise 23
Make a similar plot (months against occurrences), use the table below, and add points colored by borough (it’s a
district, there are 6 of them in New York). Is there any borough that stands out in terms of occurrence rates?

run this code
nypd_monthly_counts_boro <- nypd %>%

mutate(MONTH = format(OCCUR_DATE, "%Y-%m")) %>%
group_by(MONTH, BORO) %>%
summarise(OCCURRENCES = n()) %>%
ungroup()

use nypd_monthly_counts_boro to proceed with your visualization

Exercise 24
Again, on the same plot (months against occurrences) represent the age of victims with a color (similarly as you
did with borough). Compare your findings with the previous plot, do you see any pattern?

nypd_monthly_counts_age <- nypd %>%
mutate(MONTH = format(OCCUR_DATE, "%Y-%m")) %>%
group_by(MONTH, VIC_AGE_GROUP) %>%
summarise(OCCURRENCES = n()) %>%
ungroup()

Exercise 25
Create a scatterplot of the number of occurrences versus the month of the year using the NYPD dataset, with points
colored by the borough and smoothed with a line of best fit. Is there any trend in the data over the year, in terms of
the occurrence rates in each borough?

nypd_monthly_counts_boro <- nypd %>%
mutate(MONTH = format(OCCUR_DATE, "%Y-%m")) %>%
group_by(MONTH, BORO) %>%
summarise(OCCURRENCES = n()) %>%
ungroup()

Exercise 26
Look at the dataset on the eruptions of Old Faithful (google if you don’t know what that is). Prepare a scatterplot
of eruption times vs. waiting times. What strikes you?

old_faithful <- faithful

1.3 Boxplots

Another way to represent data is with boxplots, which nicely show the median, quartiles, IQR and can be used to
detect potential outliers. Here’s an example.

10

ggplot(mpg, aes(x = class, y = hwy)) +
geom_boxplot(size=0.2,alpha=0.2,outlier.size = 0.1) +
theme_tufte() +
theme(text = element_text(size=14))

In the last line I have increased the font size for better visibility

20

30

40

2seater compact midsize minivan pickup subcompact suv
class

hw
y

Observe we can flip the coordinates if we find this useful:

ggplot(mpg, aes(x = class, y = hwy)) +
geom_boxplot(size=0.2,alpha=0.2,outlier.size = 0.1) +
theme_tufte() + coord_flip() +
theme(text = element_text(size=14))

2seater

compact

midsize

minivan

pickup

subcompact

suv

20 30 40
hwy

cl
as

s

Exercise 27
Prepare a boxplot of income vs sex using the heights dataset.

11

Criminology exercises

Exercise 28
Create a box plot of the number of incidents per month against borough.

1.4 Using dplyr

The dplyr package has quite a few useful tools, we’ll see them in action looking at the NYC flights dataset available
in the nycflights13 package. The key ones are:

• filter, which pick observations by their values.
• arrange, which reorders the rows.
• select, which picks variables by their names.
• mutate, which creates new variables with functions of existing variables.
• summarize, which collapse many values down to a single summary.
First, let’s inspect the head of the dataset (there are quite a few variables, so it’s not going to look user-friendly):

head(flights) %>% kable("latex", booktabs = T, linesep = "") %>%
kable_styling(latex_options = c("striped","scale_down", "HOLD_position")) %>%
kable_styling(font_size = 14)

year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier flight tailnum origin dest air_time distance hour minute time_hour
2013 1 1 517 515 2 830 819 11 UA 1545 N14228 EWR IAH 227 1400 5 15 2013-01-01 05:00:00
2013 1 1 533 529 4 850 830 20 UA 1714 N24211 LGA IAH 227 1416 5 29 2013-01-01 05:00:00
2013 1 1 542 540 2 923 850 33 AA 1141 N619AA JFK MIA 160 1089 5 40 2013-01-01 05:00:00
2013 1 1 544 545 -1 1004 1022 -18 B6 725 N804JB JFK BQN 183 1576 5 45 2013-01-01 05:00:00
2013 1 1 554 600 -6 812 837 -25 DL 461 N668DN LGA ATL 116 762 6 0 2013-01-01 06:00:00
2013 1 1 554 558 -4 740 728 12 UA 1696 N39463 EWR ORD 150 719 5 58 2013-01-01 05:00:00

Another way to inspect the variables is to look at column names:

names(flights)

[1] "year" "month" "day" "dep_time"
[5] "sched_dep_time" "dep_delay" "arr_time" "sched_arr_time"
[9] "arr_delay" "carrier" "flight" "tailnum"
[13] "origin" "dest" "air_time" "distance"
[17] "hour" "minute" "time_hour"

For instance, we can pick only the flights that took place on Jan 1 by saying:

Jan1 <- filter(flights, month == 1, day == 1)
head(Jan1) %>% kable("latex", booktabs = T, linesep = "") %>%

kable_styling(latex_options = c("striped","scale_down",
"HOLD_position")) %>%

kable_styling(font_size = 14)

year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier flight tailnum origin dest air_time distance hour minute time_hour
2013 1 1 517 515 2 830 819 11 UA 1545 N14228 EWR IAH 227 1400 5 15 2013-01-01 05:00:00
2013 1 1 533 529 4 850 830 20 UA 1714 N24211 LGA IAH 227 1416 5 29 2013-01-01 05:00:00
2013 1 1 542 540 2 923 850 33 AA 1141 N619AA JFK MIA 160 1089 5 40 2013-01-01 05:00:00
2013 1 1 544 545 -1 1004 1022 -18 B6 725 N804JB JFK BQN 183 1576 5 45 2013-01-01 05:00:00
2013 1 1 554 600 -6 812 837 -25 DL 461 N668DN LGA ATL 116 762 6 0 2013-01-01 06:00:00
2013 1 1 554 558 -4 740 728 12 UA 1696 N39463 EWR ORD 150 719 5 58 2013-01-01 05:00:00

Exercise 29
Use filter to pick the flights from the last two months. Remember that | stands for disjunction, display the result
and save as twoLast.

We can arrange flights by variables. For instance, by year, month and day of the flight:

12

YearMonthDay <- arrange(flights, year, month, day)
head(YearMonthDay) %>% kable("latex", booktabs = T, linesep = "") %>%

kable_styling(latex_options = c("striped","scale_down", "HOLD_position")) %>%
kable_styling(font_size = 14)

year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier flight tailnum origin dest air_time distance hour minute time_hour
2013 1 1 517 515 2 830 819 11 UA 1545 N14228 EWR IAH 227 1400 5 15 2013-01-01 05:00:00
2013 1 1 533 529 4 850 830 20 UA 1714 N24211 LGA IAH 227 1416 5 29 2013-01-01 05:00:00
2013 1 1 542 540 2 923 850 33 AA 1141 N619AA JFK MIA 160 1089 5 40 2013-01-01 05:00:00
2013 1 1 544 545 -1 1004 1022 -18 B6 725 N804JB JFK BQN 183 1576 5 45 2013-01-01 05:00:00
2013 1 1 554 600 -6 812 837 -25 DL 461 N668DN LGA ATL 116 762 6 0 2013-01-01 06:00:00
2013 1 1 554 558 -4 740 728 12 UA 1696 N39463 EWR ORD 150 719 5 58 2013-01-01 05:00:00

Exercise 30
Order your twoLast set and order by departure delay.

Notice also how we can select columns to focus on:

head(select(flights,year:day,dep_time)) %>% kable("latex", booktabs = T, linesep = "") %>%
kable_styling(latex_options = c("striped", "HOLD_position"),font_size = 9)

year month day dep_time

2013 1 1 517
2013 1 1 533
2013 1 1 542
2013 1 1 544
2013 1 1 554
2013 1 1 554

Now we put some things together. To do so, we first select certain columns from the flights dataset, and then
use the pipe to pass the result to create new columns with mutate. The final result is called flightsMutated.

flightsMutated <- select(flights,year:day,ends_with("delay"),
distance,air_time)%>%

mutate(gain = arr_delay - dep_delay,
hours = air_time/60,
gain_per_hour = gain/hours)

head(flightsMutated) %>% kable("latex", booktabs = T, linesep = "") %>%
kable_styling(latex_options = c("striped", "HOLD_position")) %>%
kable_styling(font_size = 9)

year month day dep_delay arr_delay distance air_time gain hours gain_per_hour

2013 1 1 2 11 1400 227 9 3.783333 2.378855
2013 1 1 4 20 1416 227 16 3.783333 4.229075
2013 1 1 2 33 1089 160 31 2.666667 11.625000
2013 1 1 -1 -18 1576 183 -17 3.050000 -5.573771
2013 1 1 -6 -25 762 116 -19 1.933333 -9.827586
2013 1 1 -4 12 719 150 16 2.500000 6.400000

Quite usefully we can first group data and then summarize. In this case we first group by year, month and day,
and then order by mean delay on a given day.

byDay <- group_by(flights,year, month,day)
delayByDay<- summarize(byDay, delay = mean(dep_delay, na.rm = TRUE))

‘summarise()‘ has grouped output by ’year’, ’month’. You can override using the
‘.groups‘ argument.

head(delayByDay) %>% kable("latex", booktabs = T, linesep = "") %>%
kable_styling(latex_options = c("striped", "HOLD_position")) %>%
kable_styling(font_size = 9)

13

year month day delay

2013 1 1 11.548926
2013 1 2 13.858823
2013 1 3 10.987832
2013 1 4 8.951595
2013 1 5 5.732218
2013 1 6 7.148014

Exercise 31
Use this dataset to create a line plot of mean daily delay against day of the year (1:365). Use alpha. Note some increase in the holiday season
and in winter.

Now, notice how we can do a few things in a step-wise manner. This time we group by destination first, then add three columns: the number
of flights, mean distance, and mean delay. Then we eliminate those which had at most 20 flights. and “HNL” because flights to Honolulu are
unusual and we don’t care about them.

byDest <- group_by(flights,dest)
delay <- summarize(byDest,count=n(),

dist=mean(distance,na.rm=TRUE),
delay = mean(arr_delay,na.rm=TRUE))

delay <- filter(delay,count>20,dest !="HNL")
head(delay) %>% kable("latex", booktabs = T, linesep = "") %>%

kable_styling(latex_options = c("striped", "HOLD_position")) %>%
kable_styling(font_size = 9)

dest count dist delay

ABQ 254 1826.0000 4.381890
ACK 265 199.0000 4.852273
ALB 439 143.0000 14.397129
ATL 17215 757.1082 11.300113
AUS 2439 1514.2530 6.019909
AVL 275 583.5818 8.003831

The same things can be achieved by means of a pipe, which makes this shorter and more transparent:

delay2 <- flights %>%
group_by(dest) %>%
summarize(count = n(),

dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE)) %>%

filter(count > 20, dest != "HNL")
head(delay2) %>% kable("latex", booktabs = T, linesep = "") %>%

kable_styling(latex_options = c("striped", "HOLD_position")) %>%
kable_styling(font_size = 9)

dest count dist delay

ABQ 254 1826.0000 4.381890
ACK 265 199.0000 4.852273
ALB 439 143.0000 14.397129
ATL 17215 757.1082 11.300113
AUS 2439 1514.2530 6.019909
AVL 275 583.5818 8.003831

Exercise 32
Use the delay dataset to create a scatterplot of delay against distance, with smoothing. Specify size = count in the aesthetic. Remove standard
error from smoothing by setting se = FALSE, make the line skyblue.

14

Now, we can pick flights that haven’t been canceled, (think !is.na(dep_delay), !is.na(arr_delay)), group by tail number,
and summarize adding counts and mean delays.

not_cancelled <- flights %>%
filter(!is.na(dep_delay), !is.na(arr_delay))

delays <- not_cancelled %>%
group_by(tailnum) %>%
summarize(

n=n(),
delay = mean(arr_delay)

)
head(delays) %>% kable("latex", booktabs = T, linesep = "") %>%

kable_styling(latex_options = c("striped", "HOLD_position")) %>%
kable_styling(font_size = 9)

tailnum n delay

D942DN 4 31.500000
N0EGMQ 352 9.982954
N10156 145 12.717241
N102UW 48 2.937500
N103US 46 -6.934783
N104UW 46 1.804348

Criminology exercises

Exercise 33
Use filter to pick the incidents from the last two months of 2021 from the dataset NYPD shootings. Remember that
the date format is YYYY-MM-DD, display the result and save as "twoLast". Hint, use ">=" and "<=" operators.

firstly just run this code to change the date format in our data frame
nypd$OCCUR_DATE <- as.Date(nypd$OCCUR_DATE, "%Y-%m-%d")

fill the blank places to complete the task
twoLast <- _____ %>% filter(______________&______________)

Exercise 34
Order your twoLast table from the exercise above by Borough.

Exercise 35
Using the nypd dataset create a plot of average number of incidents per month (for 12 months). Fill the code below
to achieve that.

firstly let's add two columns representing month and day number
nypd$MONTH <- format(nypd$OCCUR_DATE, "%m")
nypd$DAY <- format(nypd$OCCUR_DATE, "%d")

Now we will count the number of incidents per month
then create column for the mean
monthly_incidents <- _____ %>%

group_by(____,____) %>%
________(INCIDENT_COUNT = n()) %>%
group_by(MONTH) %>%
summarise(MEAN_INCIDENTS = mean(_________))

view how this table looks like
head(monthly_incidents)

15

using the table above, create a plot that shows
the mean number of incidents per month
ggplot(_________)+

Exercise 36
Create a scatter plot, colored by borough, of average number of incidents per month. Add two lines, red one
representing the mean and skyblue one representing the median. Support yourself with the provided dyplyr code.

monthly_borough <- nypd %>%
group_by(_____, _____) %>%
summarize(MEAN_INCIDENTS = n()/n_distinct(OCCUR_DATE)) %>%
ungroup()

hint: you can try using scale_x_continuous(breaks = 1:12)
to make your x axis look good

1.5 Counts and barplots

These are used usually to display counts or statistics against a categorical variable. We’ll take a look at the
diamonds dataset, which is built in. Feel free to check the help file and look at the head of the dataset. Let’s
prepare a barplot picturing the counts per cut type.

ggplot(diamonds) +
geom_bar(aes(x = cut))+
theme_tufte()

0

5000

10000

15000

20000

Fair Good Very Good Premium Ideal
cut

co
un

t

Alternatively, we can focus on proportions instead. Note how we can manually edit axis labels.

ggplot(diamonds) +
geom_bar(aes(x = cut,y=..prop..,group=1))+

theme_tufte()+
xlab("cut type")+
ylab("proportion")

16

Warning: The dot-dot notation (‘..prop..‘) was deprecated in ggplot2 3.4.0.
i Please use ‘after_stat(prop)‘ instead.

0.0

0.1

0.2

0.3

0.4

Fair Good Very Good Premium Ideal
cut type

pr
op

or
tio

n

We can also fill with color by clarity:

ggplot(diamonds) +
geom_bar(aes(x = cut,fill = clarity))+

theme_tufte()+
xlab("cut type")+
ylab("proportion")

0

5000

10000

15000

20000

Fair Good Very Good Premium Ideal
cut type

pr
op

or
tio

n

clarity

I1

SI2

SI1

VS2

VS1

VVS2

VVS1

IF

Now, let’s look at data from General Social Survey (google if you don’t know what this is), this is in the library
forcats. Feel free to check the help file for this dataset.

head(gss_cat) %>% kable("latex", booktabs = T, linesep = "") %>%
kable_styling(latex_options = c("striped","scale_down", "HOLD_position")) %>%
kable_styling(font_size = 14)

17

year marital age race rincome partyid relig denom tvhours
2000 Never married 26 White $8000 to 9999 Ind,near rep Protestant Southern baptist 12
2000 Divorced 48 White $8000 to 9999 Not str republican Protestant Baptist-dk which NA
2000 Widowed 67 White Not applicable Independent Protestant No denomination 2
2000 Never married 39 White Not applicable Ind,near rep Orthodox-christian Not applicable 4
2000 Divorced 25 White Not applicable Not str democrat None Not applicable 1
2000 Married 25 White $20000 - 24999 Strong democrat Protestant Southern baptist NA

One thing we might be interested in is counts by a single categorical variable. For instance, we can use count
from package tidyverse:

gss_cat %>% count(race) %>%
kable("latex", booktabs = T, linesep = "") %>%
kable_styling(latex_options = c("striped", "HOLD_position"),font_size = 9)

race n

Other 1959
Black 3129
White 16395

Alternatively, we can use the native table method, but it’s a bit more messy:

table(gss_cat$race) %>%
kable("latex", booktabs = T, linesep = "") %>%
kable_styling(latex_options = c("striped", "HOLD_position"),font_size = 9)

Var1 Freq

Other 1959
Black 3129
White 16395
Not applicable 0

Exercise 37
Use the dataset to prepare a barplot by race.

Exercise 38
Group gss_cat by religion, and summarize creating mean age, mean tvhours and count. Use pipe, group_by, and summarize, create a new
object called relig.

Exercise 39
Use the object you created and geom_point to plot religion vs. tvhours.

Exercise 40
Do the same for reported income level and tvhours.

Criminology exercises

18

Exercise 41
Create a barplot using nypd dataset, show the number of incidents for every victim’s type of race. Fill the provided
code to achieve it. Observe the use of "labs()" and how we can easily add titles to our plot, for this reason you can
also use "ggtitle()". What strikes you in this example?

nypd_by_race <- ____ %>%
group_by(____) %>%
summarise(total_incidents = n())

______________________ +
_______(stat = "identity") +
labs(title = "Number of Shooting Incidents by Victim's Race",

x = "Victim's Race",
y = "Total Incidents")

Exercise 42
Create a barplot of total number of incidents per borough, fill the columns with victim’s race and add a title. Fill
the gaps in the provided code to achieve it, make the plot look nice.

nypd_borough_race <- _____ %>%
group_by(_____, _______) %>%
summarize(_________)

ggplot(________, aes(x = ____, y = _____, fill = ____)) +
geom_bar(____) +

Exercise 43
Now we will do something similar. Firstly add the provided lines to your previous code that was used to cre-
ate nypd_borough_race. Print first 6 records of this new table. Then, modify previous ggplot code, instead of
"total_incidents" use "percent". What does it change? Also, try adding "position= "dodge"" inside "geom_bar()".

nypd_borough_race_perc <- _____ %>%
group_by(_____, _______) %>%
summarize(_________) %>%
group_by(BORO) %>%

mutate(percent = (total_incidents/sum(total_incidents)) * 100)

Exercise 44
Create a barplot, months against total number of incidents, with columns colored by borough. Add a title and make
it look good. What months are the most dangerous according to this plot and why?

monthly_boro_incidents <- ______
group_by(_______, _________) %>%

ggplot(monthly_boro_incidents, __________) +
________+
labs(__________)

19

1.6 Histograms

For a continuous variable we can first bin values in a certain number of intervals, and then plot a histogram. Like
this (we’re using mean delays by tail number, 10 bins):

ggplot(delays, aes(x = delay)) +
geom_histogram(bins = 100)+

theme_tufte()

0

200

400

600

0 100 200 300
delay

co
un

t

We can focus on a certain range along the x axis. Like this:

ggplot(delays, aes(x = delay)) +
geom_histogram(bins = 100)+

theme_tufte()+
xlim(c(-100,100))

0

100

200

300

400

−100 −50 0 50 100
delay

co
un

t

Criminology exercises

Exercise 45

20

I prepared for you the "hour" column in nypd dataset (24h format), view it and understand what does it represent.
Create a histogram of number of occurrences against hours (24 hours). Change the color of bars. What hour of the
day is the safest in New York? Hint: bins number should be equal to 24, in "aes()" you will need only "x" variable.

nypd$hour <- as.numeric(substring(nypd$OCCUR_TIME, 1, 2)

ggplot(nypd, aes(x=____)) +

1.7 Miniproject: water distribution in New Thariyal

This is a dataset based on interviews with the inhabitants of a small village in India, New Thariyal, who have been
experiences problems with water distribution.

The project has been run by Live In Labs:

within the Data Science for Social Good project.

21

Life there looks like this:

22

Quite importantly, if you want to bring water from the river, it’s a bit of a walk:

And the plan of the village is:

23

The important thing to notice is that the borewell is in the south. Houses in the north have difficulty getting
water if the pressure is low, and some houses illegaly use their own pumps for assistance.

First, import and inspect the column names from dataset called WaterSurveyData.csv in the teachingData
folder, using read.csv() (with header = TRUE) and names().

WaterSurvey <- read.csv("teachingData/CsvFiles/WaterSurveyDataset.csv",
header = TRUE)

names(WaterSurvey)

[1] "House.No."
[2] "Sector.No."
[3] "Choice.of.Storage"
[4] "Capacity.ltrs.number..For..Cans...Buckets...we.have.encoded.count.of.both"
[5] "Motor.."
[6] "No..of.people"
[7] "Borewell.."
[8] "Thariyal.."
[9] "Major.Source"

One issue is that names are a bit ugly and long. Let’s change them. Use names(. . .) <- c(“name”,..) Our
wishlist is:

• House.No. -> House
• Sector.No. -> Sector
• Choice.of.Storage -> Storage
• Capacity. . . -> Capacity
• Motor.. -> Pump
• No..of..people -> Inhabitants
• Borewell.. -> Borewell
• Thariyal.. -> Thariyal
• Major.Source -> MajorSource

24

Make the changes and inspect the head of the dataset now.

names(WaterSurvey) <- c("House", "Sector", "Storage", "Capacity",
"Pump", "Inhabitants", "Borewell", "Thariyal",
"MajorSource")

head(WaterSurvey)%>%
kable("latex", booktabs = T, linesep = "") %>%
kable_styling(latex_options = c("striped", "HOLD_position"),font_size = 9)

House Sector Storage Capacity Pump Inhabitants Borewell Thariyal MajorSource

1 3 Tank 500 1 13 1 1 B
2 3 Buckets 12 0 12 1 1 B
3 3 Controls the borewell - 0 17 1 1 B
4 3 Buckets 15 0 7 1 0 B
6 3 Buckets 15 0 5 1 0 B
7 3 Buckets 10 0 2 1 0 B

Things to note:

• There are “controls the borewell” and NAs in capacity
• Capacity is a factor, In fact, it has a non-uniform because it mixes litres with numbers of buckets and tanks.

The measure is litres for tank or “control”, but counts of units for other sources/containers).
• Cans (metal barrels) have 50l, buckets 20l.
We need to clean the structure of the dataset. Check it with str. Notice that Pump, Borewell, and Thariyal

should be logical values, make them so using as.logical() and assignment in R. Sector should be a factor, make it
so using as.factor(). Check the structure again.

#check structure
str(WaterSurvey)

’data.frame’: 47 obs. of 9 variables:
$ House : int 1 2 3 4 6 7 10 11 12 13 ...
$ Sector : int 3 3 3 3 3 3 3 3 3 3 ...
$ Storage : chr "Tank " "Buckets" "Controls the borewell" "Buckets" ...
$ Capacity : chr "500" "12" "-" "15" ...
$ Pump : int 1 0 0 0 0 0 1 0 0 0 ...
$ Inhabitants: int 13 12 17 7 5 2 4 7 6 10 ...
$ Borewell : int 1 1 1 1 1 1 0 1 0 1 ...
$ Thariyal : int 1 1 1 0 0 0 1 1 1 0 ...
$ MajorSource: chr "B" "B" "B" "B" ...

#Notice the integer vectors which should be logical
WaterSurvey$Pump <- as.logical(WaterSurvey$Pump)
WaterSurvey$Borewell <- as.logical(WaterSurvey$Borewell)
WaterSurvey$Thariyal <- as.logical(WaterSurvey$Thariyal)
#Notice sectors are a factor
WaterSurvey$Sector <- as.factor(WaterSurvey$Sector)
WaterSurvey$Storage <- as.factor(WaterSurvey$Storage)
str(WaterSurvey)

’data.frame’: 47 obs. of 9 variables:
$ House : int 1 2 3 4 6 7 10 11 12 13 ...
$ Sector : Factor w/ 2 levels "2","3": 2 2 2 2 2 2 2 2 2 2 ...
$ Storage : Factor w/ 6 levels "Buckets","Cans",..: 6 1 4 1 1 1 6 3 2 1 ...
$ Capacity : chr "500" "12" "-" "15" ...
$ Pump : logi TRUE FALSE FALSE FALSE FALSE FALSE ...
$ Inhabitants: int 13 12 17 7 5 2 4 7 6 10 ...
$ Borewell : logi TRUE TRUE TRUE TRUE TRUE TRUE ...
$ Thariyal : logi TRUE TRUE TRUE FALSE FALSE FALSE ...
$ MajorSource: chr "B" "B" "B" "B" ...

Now, we need to have a uniform measure of storage. We have transformed this variable into a factor, let’s check
its levels with levels. Notice that “Tank” contains a redundant space.

25

levels(WaterSurvey$Storage)

[1] "Buckets" "Cans" "Cans + Buckets"
[4] "Controls the borewell" "Sump" "Tank "

Now I’ll walk you through cleaning up the storage variable.

#this will be our final vetor,
#for now it's empty

Amount <- numeric(nrow(WaterSurvey))

#logical vector locating Tanks
tanks <- WaterSurvey$Storage == "Tank "

#for tanks we extract their capacities
WaterSurvey$Capacity <- as.factor(WaterSurvey$Capacity)

TankCapacities <- as.numeric(levels(WaterSurvey$Capacity[tanks])
)[WaterSurvey$Capacity[tanks]]

#and we write them down to our target vector
Amount[tanks] <- TankCapacities

#locate cans
cans <- WaterSurvey$Storage == "Cans"

#for cans/barrels we multiply their counts by 50 liters

CansCapacities <- as.numeric(levels(
WaterSurvey$Capacity[cans]))[WaterSurvey$Capacity[cans]]*50

#save to our target vector
Amount[cans] <- CansCapacities

#locate buckets
buckets <- WaterSurvey$Storage == "Buckets"

#for bucket we multiply counts by 20 liters
BucketsCapacities <- as.numeric(levels(

WaterSurvey$Capacity[buckets]))[WaterSurvey$Capacity[buckets]]*20

#add to our target vector
Amount[buckets] <- BucketsCapacities

#For sumps (large underground tanks under the houses)
we use their capacity in liters

#locate sumps
sumps <- WaterSurvey$Storage == "Sump"

#extract their capacities
SumpCapacities <- as.numeric(levels(

WaterSurvey$Capacity[sumps]))[WaterSurvey$Capacity[sumps]]

#write in our targed vector
Amount[sumps] <- SumpCapacities

#check what we missed
WaterSurvey[Amount==0,] %>% kable("latex", booktabs = T, linesep = "") %>%

kable_styling(latex_options = c("striped", "HOLD_position"),font_size = 9)

House Sector Storage Capacity Pump Inhabitants Borewell Thariyal MajorSource

3 3 3 Controls the borewell - FALSE 17 TRUE TRUE B
8 11 3 Cans + Buckets 1,10 FALSE 7 TRUE TRUE T
20 23 3 Cans + Buckets 2,10 FALSE 5 TRUE FALSE B
23 26 3 Cans + Buckets 3,3 FALSE 3 TRUE TRUE B
28 32 3 Cans + Buckets 1,2 FALSE 4 TRUE FALSE B
37 43 2 Cans + Buckets 7,1 TRUE 11 FALSE TRUE T

26

#finish manually: Controlls the borwell is, say 10000
Amount[WaterSurvey$Storage == "Controls the borewell"] <- 10000
Amount[8] <- 50 + 10 *20
Amount[20] <- 2+50 + 10*20
Amount[23] <- 3*50 + 3*20
Amount[28] <- 50 + 2*20
Amount[37] <- 7*50 + 20

#inspect the vector:
#head(WaterSurvey$Amount)
Amount

[1] 500 240 10000 300 300 200 500 250 150 100 500 360
[13] 200 80 140 100 60 200 80 252 120 140 210 350
[25] 80 60 12743 90 1000 120 80 80 4247 100 100 120
[37] 370 500 100 80 80 350 300 200 500 350 500

And finally let's add the Amount vector as a column to the data frame
head(cbind(WaterSurvey, Amount)) %>% kable("latex", booktabs = T, linesep = "") %>%

kable_styling(latex_options = c("striped", "HOLD_position"),font_size = 9)

House Sector Storage Capacity Pump Inhabitants Borewell Thariyal MajorSource Amount

1 3 Tank 500 TRUE 13 TRUE TRUE B 500
2 3 Buckets 12 FALSE 12 TRUE TRUE B 240
3 3 Controls the borewell - FALSE 17 TRUE TRUE B 10000
4 3 Buckets 15 FALSE 7 TRUE FALSE B 300
6 3 Buckets 15 FALSE 5 TRUE FALSE B 300
7 3 Buckets 10 FALSE 2 TRUE FALSE B 200

The result of this process is a cleaned up data frame with the column that fairly represents the amount of water
for a household. Data in such form can be used for a further analysis.

1.8 Freefall exercise

Before starting with the exercises please ensure that those libraries are loaded. If one of them is not installed run
the following command to install it install.packages(“packageName”).

library(ggplot2)
library(ggthemes)
library(ggcorrplot)
library(gridExtra)
library(reshape2)

(A) Look at the descriptioncitation.html and the 038488-001-Codebook.pdf (the latter is in the DS0001 folder) to
see what a data documentation should look like.

(B) Load the dataset, and use tools you know to inspect its structure.

library(haven)

data <- as.data.frame(read_xpt("DS0001/08488-0001-Data.xpt"))

(C) Use the following code to inspect some correlations in the set. What’s the lesson?

cors <- cor(_____, method = 'spearman')

ggcorrplot(_____, method="square")

Too many variables to run without first thinking about what we are interested in and what the potential predictors
we’re interest in are.

(D) Go back to the codebook, see what variables 5:38 mean, do corrplot for these.

27

• Why do you think V12 is negatively correlated with other variables?
• Why do you think are V26 and V27 slightly negatively correlated with most previous variables, but not with

the latter ones?

(E) Let’s focus on V38; do corrplot of this variable and variables V39-84.

• Are there any variables that might be very good predictors?
• What are the four best predictor candidates for V38 from this set? (do this programatically, that is extract

the line corresponding to V38 and use sort(____, decreasing = TRUE) to find top five entries other than V38
itself).

• How good predictors are they, separately taken?
• Hint: ?sort

(F) Prepare four plots using ggplot, assigning them to variables, make sure the axes have informative names, of
V38 against those variables and put them together using grid.arrange(plot1, plot2, plot3, plot4)

• Use: V54, V69, V70, V75
• Note points will overlap, you need to deal with this!

(G) Now, would you say that V69, V70 and V75 provide independent pieces of information?

• Do corrplot to check first, then two plots of V70 and of V75 against V69.
• What does it tell you about using them in the same model?

(H) Extract columns 13-27, then use t() to rotate the frame to have persons as columns, then use melt() to convert
to long format, then plot lines with a geom_line(), with years on x, grouping by person ID (which is the other
variable); use scale_x_discrete(labels = 10:24), add appropriate axes labels.

• Do you think the triangular shapes give us an insight?
• Do you see any clear evidence for the grouping effect (intensive short term vs long-term)?

(I) Now look at the codebook. Try to find at least three interesting questions that you could try to at least get some
insight into by looking into data, not necessarily about convictions, and prepare three visualizations that address
them; try to make the visualizations look good!

28

	Data, tabulation and visualisation
	Data: reading, cleaning, summarizing
	Basic plots with ggplot2
	Boxplots
	Using dplyr
	Counts and barplots
	Histograms
	Miniproject: water distribution in New Thariyal
	Freefall exercise

