Visualisation and data analysis for journalism studies

Rafal Urbaniak and Nikodem Lewandowski
(University of Gdansk)
https://rfl-urbaniak.github.io/teaching/
rfl.urbaniak+teaching@gmail.com

The plan

Motivations, goals, game rules
Some history
The role of perception
Getting started with R, RStudio and ggplot2
More on what to show
Focus
Epistemic problems
Technical and mathematical problems
Statistical learning and probabilistic thinking
Statistical and analytical blunders
Basics of Bayesian thinking
Linear models
Causality and variable selection

Motivations

- It's too easy to generate tables and visualisation.
- This makes communication harder!

Motivations

- It's too easy to generate tables and visualisation.
- This makes communication harder!

Bad graphs everywhere!

Lack of background

- We learn some math at school.
- We learn some arts at school.

Lack of background

- We learn some math at school.
- We learn some arts at school.

Problem
We never learn to put them together, and think they're opposite.

Some examples

Ticket Trend

Cole Nussbaum [4]

Some examples Please approve the hire of 2 FTEs

to backfill those who quit in the past year

Ticket volume over time

Data source: XYZ Dashboard, as of 12/31/2014 | A detailed analysis on tickets processed per person and time to resolve issues was undertaken to inform this request and can be provided if needed.

Some examples

Survey Results

PRE: How do you feel about doing science?
$■$ Bored $■$ Not great $■$ OK $■$ Kind of interested $■$ Excited

POST: How do you feel about doing science?
\square Bored \quad Not great \equiv OK $■$ Kind of interested \quad Excited

Some examples

Pilot program was a success

How do you feel about science?

Based on survey of 100 students conducted before and after pilot program (100% response rate on both surveys).

Some examples

Average Retail Product Price per Year

Some examples

To be competitive, we recommend introducing our product below the $\$ 223$ average price point in the $\mathbf{\$ 1 5 0} \mathbf{- \$ 2 0 0}$ range

Retail price over time by product

Cole Nussbaum [6]

Goal

- To understand psychological factors that guide various visualization choices
- To be able to properly analyze data yourself (at a decent level, or at least to understand some of the complexities involved)
- To be able to visualize your data insights so that they clearly convey your message
- To be able to work in R, a statistical programming language

Rules: final grade

Final test: 60 points (optional)

- multiple choice with penalty points

Project: 60 points (optional)

- two-three pages of meaningful text with at least two visualizations, bonus points for animations
- everything prepared in R markdown
- feedback loop: idea $->$ draft $->$ feedback $->$ revisions $->$ f2 $->$ r2

Tutorial performance: 60 points (optional)

- If you complete a free-fall exercise without much help, show us, get some points!

Final grade
As if out of 100 .

Contact

Updates - only here!
https://rfl-urbaniak.github.io/teaching/

Contact - only here!
rfl.urbaniak+teaching@gmail.com

Sources

Avoiding Data Pitfalls

How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations

Sources

Sources

Texts in Statistical Science

Statistical Rethinking

A Bayesian Course with
Examples in R and Stan

Richard McElreath

Precursors

Precursors

Precursors

Joseph Priestley (1733-1804)

Precursors

William Playfair (1759-1823)

Plates

Precursors

Precursors

William Mitchell Gillespie (1816-1868)

XIXth century explosion

Reasons

- modern nation-states with increased interest in collecting economic and demographic data
- descriptive statistical methods used before in physical sciences began to be used in social sciences (e.g. Adolphe Quelet, Francis Galton)
- dawn of new sciences, such as epidemiology

Florence Nigthingale (1820-1910) and the Crimean war

BLAERAM θ ths EAUSES er MORTALITY

2.

APRIL 1855 to MARCH 1856 .
in the ARMY in the EAST
1.

APRIL 1854 to MARCH 1855.

The entire arens may be compared by folloscing the blue, the mof \& the black lines enclosing them. Ohugh-smallsouk

John Snown (1813-1858) and cholera in London

Modern dark ages in statistics

Milestones: Time course of developments

Number of visualization historical landmarks per year, Friendly 2008

The pictorial turn in newspapers

Newspapers became a prime site where visual art and popular forces met and made their peace, and news contributed to the fullness of modernism as it arrived in the twentieth century [...] During the century, the newspapers in the study shifted from the abundant complexity of the Victorian era to the fixed simplicity of modernism. They adopted all the specific forms commentators identified with the modern style: fewer columns, prominent illustrations, horizontal layout, and simplified headline typography. (Barnhurst \& Nerone 2001)

Yellow kid journalism (1895-1898)

Say what?
Sensational journalism in the circulation war between Joseph Pulitzer's New York World and William Randolph Hearst's New York Journal (Pulitzer tried to be more content-based but circulation shrank)

Yellow kid journalism (1895-1898)

Viennese Museum for Society and the Economy (1924)

Facts for the uneducated

ISOTYPE, universal visual language by Neurath, Arntz and Reidemeister

Viennese Museum for Society and the Economy (1924)

Facts for the uneducated

ISOTYPE, universal visual language by Neurath, Arntz and Reidemeister

The "Bible"
Pictographs and Graphs: How to Make and Use Them, Modley \& Lowenstein, 1952

ISOTYPE

A page from Fortune, 1929

Birth of USA Today (1982)

Birth of USA Today (1982)

- its success expanded the use of graphics in print publications
- tilted the stylistic balance towards the pictorial and lighthearted
- art training, no quantitative expertise
- in 198460% of 156 newspapers reported an increased use of news graphics, and an additional 22% said that they had just incorporated them into their pages

What's the problem?

Nearly all those who produce graphics for mass publication are trained exclusively in the fine arts and have had little experience with the analysis of data [...] Illustrators too often see their work as a exclusively artistic enterprise-the words "creative", "concept", and "style" combine regularly in all possible permutations, a Big Think jargon for the small task of constructing a time-series a few data points long. Those who get ahead are those who beautify data, never mind statistical integrity. [Edward Tufte 1983]

Nigel Holmes

Nigel Holmes

As long as the artist understands that the primary function is to convey statistics and respect that duty, then you can have fun (or be serious) with the image: that is, the form in which those statistics appear. Boredom is as much a threat in visual design as it is elsewhere in art and communication. The mind and eye demand stimulation and surprise.

Jan V. White

Jan V. White

To make dry statistics more evocative of their subject, it is often wiser to concentrate the illustrative effort on the background against which the bars are to be seen rather than on the bars themselves, [...] transforming the bars into pictorially descriptive symbols such as chimneys or stacks or coins, or rows of people is, clearly, also acceptable [...] The material of which they are made can be manipulated as the situation demands. For instance, if the bars are too long to fit into a given space, why not fold them back? You can break them, roll them back and even squash them.
(Jan. V. White, 1984)

Jan V. White

White's textbook on visualization, 1984

Computer-age graphics

George Rorick, hand-made visualisation, 11 a.m. to 6 p.m.

Computer-age graphics

George Rorick, hand-made visualisation, 11 a.m. to 6 p.m.

Computer-age graphics

- Apple, 1984
- PostScript \& Adobe Illustrator, 1987 (raster vs. vector files)
- Adobe Photoshop, 1989

We went from some very nice illustrated graphics to some very poor computer-generated graphics, but that was the limitations of the technology, and it took about at least five years, maybe more, before we started to see the computer graphics start to rise up in quality.
John Grimwade (check out his website!)

Backlash against chartoons

Tukey 1977, Bertin 1967

Backlash against chartoons

Tufte 1983, 1990

Backlash against chartoons

Sometimes decoration can help editorialize about the substance of the graphic. But it is wrong to distort the data measures -the ink locating values of numbers- in order to make an editorial comment or fit a decorative scheme.
(Tufte 1983: 59)

Backlash against chartoons

If you belong to the school of people who believe that charts should only present statistics in the most straightforward, plain way, with no other visual help to the reader, for example, than the bar of the bar chart, the line of the fever graph, the circle of the pie chart, or the rules of the table, then move on to another part of the book [...] Boredom is as much a threat in visual design as it is elsewhere in art and communication. The mind and eye demand stimulation and surprise [...] Even a smile will encourage a reader to look into the statistics he or she might not have thought of reading in a less embellished chart. (Holmes 1984: 72)

Backlash against chartoons

Too many data presentations [...] seek to attract and divert attention by means of display apparatus and ornament. Chartjunk has come to corrupt all sorts of information exhibits and computer interfaces (Tufte 1990: 33)

Backlash against chartoons

Backlash against chartoons

Consider this unsavory exhibit at right —chockablock with cliché and stereotype, coarse humor, and a content-empty third dimension. Is it the product of a visual sensitivity in which a thigh-graph with a fishnet-stocking grid counts as Creative Concept. [...] Lurking behind chartjunk is contempt for both information and for the audience. Chartjunk promoters imagine that numbers and details are boring, dull, and tedious, requiring ornament to enliven. Cosmetic decoration, which frequently distorts the data, will never salvage an underlying lack of content. If the numbers are boring, then you've got the wrong numbers. Credibility vanishes in clouds of chartjunk; who would trust a chart that looks like a video game? (Tufte 1990: 34).

Backlash against chartoons

Graphical competence demands three quite different skills: the substantive, statistical, and artistic. Yet now [in the early 80s] most graphical work, particularly at news publications, is under the direction of but a single expertise -the artistic. Allowing artistillustrators to control the design and content of statistical graphics is almost like allowing typographers to control the content, style, and editing of prose.
(Tufte 1983: 87).

Recent developments

Recent developments

Geek takeover

- more information density and more data
- visualization desks more independent from arts departments
- the 90 s and early 2000 s: illustration-driven explanations, sometimes supplemented by small and straight-forward statistical graphs and data maps
- today, the balance has shifted to presentations that rely mainly on the visual display of data, both quantitative and qualitative
- often, no longer detached "graphics departments". Data journalists, nerd journalism!

Recent developments

Check out Malofiej awards (1992)

Recent developments

Recent developments

Example (most popular piece in Times, 2013)
How Y'all, Youse and You Guys Talk
What does the way you speak say about where you're from?
Answer all the questions below to see your personal dialect map.

Your Map
See the pattern of your didiect in the map below. Three of the most similar otles are shown.
Lestuntur Moicines Show hast infar suve vour mur 18 日

These maps show your most distinctive answer for each of these cities.

For the tutorial

Complete the introductory instructions about github, bring a flash drive!

Lecture 2
 The role of perception

Exploratory data visualisation

Look at the data!

- understand and learn the structure
- obtain insights to pursue

Exploratory data visualisation

Look at the data!

- understand and learn the structure
- obtain insights to pursue

Correlation coefficient $=0.82$

Correlation coefficient $=0.82$

Correlation coefficient $=0.82$

Correlation coefficient $=0.82$

Exploratory data visualisation

INcome and voter turnout

Jackman (1980)on Hewitt (1977). The original paper had argued for a significant association between voter turnout and income inequality based on a quantitative analysis of eighteen countries.

Chartjunk?

Data-to-ink ratio

- Graphical excellence is the well-designed presentation of interesting data-a matter of substance, of statistics, and of design.
- [It] consists of complex ideas communicated with clarity, precision, and efficiency.
- $[\mathrm{It}]$ is that which gives to the viewer the greatest number of ideas in the shortest time with the least ink in the smallest space.
- [It] is nearly always multivariate. And graphical excellence requires telling the truth about the data.
(Tufte 1983, 51)

Chartjunk?

Example of chartjunk

Chartjunk?

Holmes's Monstrous costs are more readily recalled (Bateman et al. 2010)

In contrast

Minard's visualisation of Napoleon's retreat

Golden middle?

E. W. Anderson et al. (2011) found that Tufte's (C) proved to be the most cognitively difficult for viewers to interpret.

Bad data

Percentage of people who say it is "essential" to live in a democracy

"How Stable Are Democracies?" Warning Signs Are Flashing Red, The Times, 2016

Bad data

"How Stable Are Democracies?" Warning Signs Are Flashing Red, The Times, 2016

- cross-sectional rather than longitudinal (line graph suggests otherwise)!
- Seems like people were asked "is it essential to live in democracy"?

Bad data

"How Stable Are Democracies?" Warning Signs Are Flashing Red, The Times, 2016

- cross-sectional rather than longitudinal (line graph suggests otherwise)!
- Seems like people were asked "is it essential to live in democracy"?
- In fact, 10-point scale, lines for those who gave 10 s.

Bad data

Erik Voeten: same data, mean responses

Bad perception

A default bar graph in Excel

Bad perception

Junk free, still hard to interpret

Bad perception

William S. Cleveland's example of the impact of the aspect ratio (no real convergence)

Perception and data visualisation

Edges

Make some thinks easier to see. Even if they're not there.

Perception and data visualisation

Edges
Make some thinks easier to see. Even if they're not there.

Mach bands: where do you see more contrast?

Perception and data visualisation

Edges

Make some thinks easier to see. Even if they're not there.

- same shade of grey is perceived differently depending on background
- distinguishing shades of brightness is not uniform either (we better distinguish dark shades)

Perception and data visualisation

Attraction to edges

Perception and data visualisation

Attraction to edges

Perception and data visualisation

Attraction to edges

Not like magic trick!
After I explain, you still cannot stop seeing these.

Using colors

Three compontents

- luminance (conventionally: brightness)
- hue (conventionally: color)
- chrominance/chroma (conventionally: intensity)

Sequential grayscale

Luminance, Luminance + chroma, all, diverging with a neutral point, unordered

Using colors

Three compontents

- luminance (conventionally: brightness)
- hue (conventionally: color)
- chrominance/chroma (conventionally: intensity)

Unordered hues

Luminance, Luminance + chroma, all, diverging with a neutral point, unordered

Question

How to meaningfully map data to colors, avoiding blinding the color-blind, and without introducing confusion?

Preattentive search

Preattentive search

Find the blue circles

Preattentive search

Color \& shape, $N=100$

- shape and color are two distinct channels
- pop-out on the color channel is stronger
- dual channels slow people down

Looking for structure

Matérn

Which is more random?

Gestalt inferences

$\begin{array}{lllllll}000 & 00 & 00 & 000 & 00 & 00 \\ 000 & 00 & 00 & 000 & 00 & 00 \\ 000 & 00 & 00 & 000 & 00 & 00\end{array}$

Proximity, similarity, connection, continuity, closure, figure and ground, common fate

Gestalt inferences

$\begin{array}{llllll}000 & 00 & 00 & \text { OOO } & 00 & 00 \\ 000 & 00 & 00 & 000 & 00 & 00 \\ 000 & 00 & 00 & 000 & 00 & 00\end{array}$

Proximity, similarity, connection, continuity, closure, figure and ground, common fate

- upper left: proximity $>$ shape

Gestalt inferences

$\begin{array}{lllllll}000 & 00 & 00 & 000 & 00 & 00 \\ 000 & 00 & 00 & 000 & 00 & 00 \\ 000 & 00 & 00 & 000 & 00 & 00\end{array}$

Proximity, similarity, connection, continuity, closure, figure and ground, common fate

- upper left: proximity $>$ shape
- upper right: color $>$ shape, proximity

Gestalt inferences

$\begin{array}{lllllll}000 & 00 & 00 & 000 & 00 & 00 \\ 000 & 00 & 00 & 000 & 00 & 00 \\ 000 & 00 & 00 & 000 & 00 & 00\end{array}$

Proximity, similarity, connection, continuity, closure, figure and ground, common fate

- upper left: proximity $>$ shape
- upper right: color $>$ shape, proximity
- middle: left (no clarity), right: connection > shape

Gestalt inferences

$\begin{array}{lllllll}000 & 00 & 00 & 000 & 00 & 00 \\ 000 & 00 & 00 & 000 & 00 & 00 \\ 000 & 00 & 00 & 000 & 00 & 00\end{array}$

Proximity, similarity, connection, continuity, closure, figure and ground, common fate

- upper left: proximity $>$ shape
- upper right: color > shape, proximity
- middle: left (no clarity), right: connection > shape
- connection/fate, left-to-right (note continuity)

Impact on graph decoding

Position

Length

Cleveland \& McGill, 1984, 1987, Heer \& Bostock 2010

Impact on graph decoding

Crowdsourced results

Impact on graph decoding

- we do best with relative position aligned on a common scale

Impact on graph decoding

- we do best with relative position aligned on a common scale
- when elements are not aligned but still share a scale, comparison is a little harder

Impact on graph decoding

- we do best with relative position aligned on a common scale
- when elements are not aligned but still share a scale, comparison is a little harder
- it is more difficult again to compare the lengths of lines without a common baseline

Impact on graph decoding

- we do best with relative position aligned on a common scale
- when elements are not aligned but still share a scale, comparison is a little harder
- it is more difficult again to compare the lengths of lines without a common baseline
- we misjudge angles and areas

Impact on graph decoding

- we do best with relative position aligned on a common scale
- when elements are not aligned but still share a scale, comparison is a little harder
- it is more difficult again to compare the lengths of lines without a common baseline
- we misjudge angles and areas
- we're even worse with the change of slope

Re-thinking channels

Re-thinking channels

- the channels has to be able to capture the values properly (e.g. avoid gradient scale with categorical data?)

Re-thinking channels

- the channels has to be able to capture the values properly (e.g. avoid gradient scale with categorical data?)
- try to choose the most effective channels (e.g. avoid encoding numbers as areas)

Re-thinking channels

- the channels has to be able to capture the values properly (e.g. avoid gradient scale with categorical data?)
- try to choose the most effective channels (e.g. avoid encoding numbers as areas)
- given a channel, error rate depends on minor choices (e.g. wrong sequence of colors)

Clutter and gestalt

Signal-to-noise ratio

- you're fighting for the viewer's attention!
- eliminate redundant cognitive load!
- Remembering gestalt principles may help here

Proximity

\square

Separate by empty space to group, no need to draw anything more

Similarity

Use similarity to capture additional grouping

Enclosure

Enclosure is even stronger, use sparingly

Closure

Often borders and backgrounds are unnecessary

Continuity

Avoid lines which can be obtained by continuity

Lack of visual order

Demonstrating effectiveness is most important consideration when selecting a provider

Data source: xyz; includes N number of survey respondents. Note that respondents were able to choose up to 3 options.

Lack of visual order

Demonstrating effectiveness is most important consideration when selecting a provider

In general, what attributes are the most important
to you in selecting a service provider?

Lack of visual order

Demonstrating effectiveness is most important consideration when selecting a provider

In general, what attributes are the most important
to you in selecting a service provider?

- notice left-to-right, top-to-bottom

Lack of visual order

Demonstrating effectiveness is most important consideration
when selecting a provider
In general, what attributes are the most important
to you in selecting a service provider?

- notice left-to-right, top-to-bottom
- notice how dropping diagonal elements improves clarity

Lack of visual order

Demonstrating effectiveness is most important consideration
when selecting a provider

Data source: xyz; includes N number of survey respondents.
Note that respondents were able to choose up to 3 options.

- notice left-to-right, top-to-bottom
- notice how dropping diagonal elements improves clarity
- Same applies to text: the reading of rotated text 45 degrees is 52% slower (text rotated 90 degrees in either direction is 205% slower).

White space

Never add data just for the sake of adding data
Only add data with a thoughtful and specific purpose in mind!

Contrast

It's easy to spot a hawk in a sky full of pigeons, but as the variety of birds increases, that hawk becomes harder and harder to pick out. (Colin Ware, Information Visualization: Perception for Design, 2004)

Contrast

It's easy to spot a hawk in a sky full of pigeons, but as the variety of birds increases, that hawk becomes harder and harder to pick out.
(Colin Ware, Information Visualization: Perception for Design, 2004)

Contrast

It's easy to spot a hawk in a sky full of pigeons, but as the variety of birds increases, that hawk becomes harder and harder to pick out.
(Colin Ware, Information Visualization: Perception for Design, 2004)
Performance overview

■ Our business

- Competitor A
- Competitor B
- Competitor C
- Competitor D
- Competitor E

Weighted performance index I relative rank

Decluttering: a case study

Initial visualization

Decluttering: a case study

Chart borders were redundant

Decluttering: a case study

Grid lines only if specific values are essential

Decluttering: a case study

Data markers add no content

Decluttering: a case study

Clean up axis labels

Decluttering: a case study

Label data directly

Decluttering: a case study

Decluttering: a case study

Before \& after

Getting started with R, RStudio and ggplot2

More on what to show

Importance of context

Exploratory visualisation

- Not much care to the fine details
- Multiple visualizations for yourself before you find the pearl

Importance of context

Exploratory visualisation

- Not much care to the fine details
- Multiple visualizations for yourself before you find the pearl

Explanatory visualisation

- Don't show them everything!
- Focus on key messages and polish their presentation

Who, what, how

Who are you addressing?

- Find common ground, identify how much you can assume
- Communicating to too many disparate audiences you will fail
- Do they think you know what you're doing, or do you have to convince them?

Who, what, how

What do you want them to learn?

- First, three-minute story: before producing a graph, come up with a short elevator pitch for what you want to convey

Who, what, how

What do you want them to learn?

- First, three-minute story: before producing a graph, come up with a short elevator pitch for what you want to convey
- Next: a big picture statement: articulate your unique point of view, convey what's at stake, make it a complete sentence

Who, what, how

What do you want them to learn?

- First, three-minute story: before producing a graph, come up with a short elevator pitch for what you want to convey
- Next: a big picture statement: articulate your unique point of view, convey what's at stake, make it a complete sentence
- Only then, prepare the visualization, keeping these in mind

Who, what, how

How will you communicate?

- Live presentation?
- Written text?
- just the visualization?

Who, what, how

How will you communicate?

- Live presentation?
- Written text?
- just the visualization?
- The less control you have, the more details you need!

Who, what, how

How will you communicate?

- Live presentation?
- Written text?
- just the visualization?
- The less control you have, the more details you need!

If talking
Know your stuff and practice, practice, practice! Never read!

Choosing the visual

Embarassment of riches

Out of hundreds of methods, only 10-20 are really good. The rest is fluff.

Choosing the visual

91\%

Simple text

	A	B	C
Category 1	15%	22%	42%
Category 2	40%	36%	20%
Category 3	35%	17%	34%
Category 4	30%	29%	26%
Category 5	55%	30%	58%
Category 6	11%	25%	49%

Table

	A	B	C
Category 1	15%	22%	42%
Category 2	40%	38%	20%
Category 3	35%	17%	64%
Category 4	30		26%
Category 5	55%		58%
Category 6	11%	25%	49%

Heatmap

Scatterplot

Slopegraph

Choosing the visual

Vertical bar

Waterfall

Horizontal bar

Stacked horizontal bar

Square area

Simple text

Key strategy

- Focus on the number(s)
- Perhaps add a few supporting words
- Messing with more you will lose the oomph

Simple text

Children with a
 "Traditional" Stay-atHome Mother

\% of children with a married stay-at-home mother with a working husband

Note: Based on children younger than 18.
Their mothers are categorized based on
employment status in 1970 and 2012.
Source: Pew Research Center analysis of March Current Population Surveys Integrated Public Use Microdata Series (IPUMS-CPS), 1971 and 2013
Adapted from PEW RESEARCH CENTER

- Lots of space lost on graphing two data points
- Lot of detailed commentary that can be said, moved to a footnote or the figure description
- What do you think about "The number of children having a traditional stay-at-home mom decreased more than 50% between 1970 and 2012"?

Simple text

of children had a
traditional stay-at-home mom in 2012, compared to 41% in 1970

Stay-at-home moms, remade

Tables

Good for

- communicating to a mixed audience whose members might be interested in different rows
- multiple different units of measurement

Tables

Good for

- communicating to a mixed audience whose members might be interested in different rows
- multiple different units of measurement

Bad for

- Live presentation
- A more narrative take

Tables

Key rule
Let the data get the attention
Heavy borders

Group			Metric A
Metric B	Metric C		
Group 1	$\$ \mathrm{X} . \mathrm{X}$	$\mathrm{Y} \%$	Z, ZZZ
Group 2	$\$ \mathrm{X} . \mathrm{X}$	$\mathrm{Y} \%$	Z, ZZZ
Group 3	$\$ \mathrm{X} . \mathrm{X}$	$\mathrm{Y} \%$	Z, ZZZ
Group 4	$\$ \mathrm{X} . \mathrm{X}$	$\mathrm{Y} \%$	Z, ZZZ
Group 5	$\$ \mathrm{X} . \mathrm{X}$	$\mathrm{Y} \%$	Z, ZZZ

Light borders

| \mid Group | Metric A | Metric B | Metric C |
| :--- | :---: | :---: | :---: | :---: |
| Group 1 | $\$ \mathrm{X.X}$ | $\mathrm{Y} \%$ | Z, ZZZ |
| Group 2 | $\$ \mathrm{X} . \mathrm{X}$ | $\mathrm{Y} \%$ | Z, ZZZ |
| Group 3 | $\$ \mathrm{X} . \mathrm{X}$ | $\mathrm{Y} \%$ | Z, ZZZ |
| Group 4 | $\$ \mathrm{X} . \mathrm{X}$ | $\mathrm{Y} \%$ | Z, ZZZ |
| Group 5 | $\$ \mathrm{X} . \mathrm{X}$ | $\mathrm{Y} \%$ | Z, ZZZ |

Minimal borders			
Group	Metric A	Metric B	Metric C
Group 1	$\$ X . X$	$Y \%$	$Z, Z Z Z$
Group 2	$\$ X . X$	$Y \%$	$Z, Z Z Z$
Group 3	$\$ X . X$	$Y \%$	$Z, Z Z Z$
Group 4	$\$ X . X$	$Y \%$	$Z, Z Z Z$
Group 5	$\$ X . X$	$Y \%$	$Z, Z Z Z$

Heatmap

l			
	A	B	C
Category 1	15%	22%	42%
Category 2	40%	36%	20%
Category 3	35%	17%	34%
Category 4	30%	29%	26%
Category 5	55%	30%	58%
Category 6	11%	25%	49%

Heatmap
Low-HIGH

	A	B	C
Category 1	15%	22%	42%
Category 2	40%	36%	20%
Category 3	35%	17%	34%
Category 4	30%	29	26%
Category 5	55%	60%	58%
Category 6	11%	25%	49%

Scatterplot

Cost per mile by miles driven

Scatterplot

Cost per mile by miles driven

Line graph

Single series

Two series

Multiple series

Single or multiple series with color for emphasis, note consistent intervals

Line graph

Passport control wait time

Past 13 months

If showing a summary with a range, be clear about what you're showing

Slopegraph

Use for two time periods or paired sets of for comparison

Slopegraph

Barplots for categorical data

IF BUSH TAX CUTS EXPIRE

Barplots for categorical data

IF BUSH TAX CUTS EXPIRE

The visual increase is 460%, the actual increase is 13%, lie ratio of 35.38

$$
\begin{aligned}
35-34 & =1 \\
39.6-34 & =5.6 \\
5.6-1 & =4.6 \\
4.6 / 1 & =4.6 \\
(39.6-35) / 35 & =.13
\end{aligned}
$$

Barplots for categorical data

IF BUSH TAX CUTS EXPIRE TOP TAX RATE

IF BUSH TAX CUTS EXPIRE TOP TAX RATE

Note y axis moved to the left, labels pulled inside

Barplots for categorical data

Balancing the width

Vertical bar chart

Single series

Two series

Multiple series

Adding series becomes messy; if you really do this, use color for emphasis

Stacked bar chart

Comparing these is easy

Comparing these is hard

Waterfall chart

2014 Headcount math

Though more employees transferred out of the team than transferred in, aggressive hiring means overall headcount (HC) increased 16% over the course of the year.

Horizontal barplot

Single series

Two series

Multiple series

Area graph

Interview breakdown

Out of every 100 phone screens...
we bring 25
candidates onsite for interviews...
and
extend 9 offers.

Pie charts are evil

Supplier Market Share

- Supplier A
- Supplier B
- Supplier C
- Supplier D

Pie charts are evil

Supplier Market Share

Pie charts are evil

What's wrong?

- Don't use 3D!
- Even without 3D, we're bad with angles!
- If you need the labels to avoid confusion, the visualization failed

Pie charts are evil

Supplier Market Share

What to do instead

Don't use 3D

Number of issues

What are the actual values?

Don't use secondary y-axis

This is hard to read without confusion

Don't use secondary y-axis

[^0]
Leverage focus

Preattentive attributes

756395068473

Preattentive attributes

Count threes now

Preattentive attributes

Preattentive attributes in text

No preattentive attributes

What are we doing well? Great Products. These products are clearly the best in their class.
Replacement parts are shipped when needed. You sent me gaskets without me having to ask. Problems are resolved promptly. Bev in the billing office was quick to resolve a billing issue I had. General customer service exceeds expectations. The account manager even called to check in after normal business hours.
You have a great company - keep up the good work!

Color

What are we doing well? Great Products. These products are clearly the best in their class.
Replacement parts are shipped when needed. You sent me gaskets without me having to ask. Problems are resolved promptly. Bev in the billing office was quick to resolve a billing issue I had. General customer service exceeds expectations. The account manager even called to check in after normal business hours.
You have a great company - keep up the good work!

Bold

What are we doing well? Great Products. These products are clearly the best in their class.
Replacement parts are shipped when needed. You sent me gaskets without me having to ask. Problems are resolved promptly. Bev in the billing office was quick to resolve a billing issue I had. General customer service exceeds expectations. The account manager even called to check in after normal business hours.
You have a great company - keep up the good work!

Italics

What are we doing well? Great Products. These products are clearly the best in their class.
Replacement parts are shipped when needed. You sent me gaskets without me having to ask. Problems are resolved promptly. Bev in the billing office was quick to resolve a billing issue I had. General customer service exceeds expectations. The account manager even called to check in after normal business hours.
You have a great company - keep up the good work!

Preattentive attributes in text

Size

What are we doing well? Great Products. These products are the best in their class. Replacement parts are shipped when needed. You sent gaskets

> without me having to aSk. Problems are resolved promptly. Bev in the billing office was quick to resolve a billing issue I had. General customer service exceeds expectations. The account manager even called to check in after normal business hours. You have a great company - keep up the good work!

Outline (enclosure)

What are we doing well? Great Products. These products are clearly the best in their class.
Replacement parts are shipped when needed. You sent me gaskets without me having to ask. Problems are resolved promptly. Bev in the billing office was quick to resolve a billing issue I had. General customer service exceeds expectations. The
account manager even called to check in after
normal business hours.
You have a great company - keep up the good work!

Separate spatially

What are we doing well? Great Products. These products are clearly the best in their class.
Replacement parts are shipped when needed. You sent me gaskets without me having to ask.

Problems are resolved promptly.
Bev in the billing office was quick to resolve a billing issue I had. General customer service exceeds expectations. The account manager even called to check in after normal business hours. You have a great company - keep up the good work!

Underline (added marks)

What are we doing well? Great Products. These products are clearly the best in their class.
Replacement parts are shipped when needed. You sent me gaskets without me having to ask. Problems are resolved promptly. Bev in the billing office was quick to resolve a billing issue I had. General customer service exceeds expectations. The account manager even called to check in after normal business hours.
You have a great company - keep up the good work!

Preattentive attributes in text

What are we doing well?

Themes \& example comments

- Great products: "These products are clearly the best in class."
- Replacement parts are shipped when needed:
"You sent me gaskets without me having to ask, and I really needed them, too!"
- Problems are resolved promptly: "Bev in the billing office was quick to resolve a billing issue I had."
- General customer service exceeds expectations:
"The account manager even called after normal business hours.
You have a great company - keep up the good work!"

Preattentive attributes in graphs

Top 10 design concerns

Preattentive attributes in graphs

7 of the top 10 design concerns have 10 or more concerns per 1,000 .
Discussion: is this an acceptable default rate?
Top 10 design concerns
concerns per 1,000

Preattentive attributes in graphs

Of the top design concerns, three are noise-related.

Top 10 design concerns

Preattentive attributes in graphs

Country Level Sales Rank Top 5 Drugs

Rainbow distribution in color indicates sales rank in given country from \#1 (red) to \#10 or higher (dark purple)

Country	A	B	C	D	E
AUS	1	2	3	6	7
BRA	1	3	4	5	6
CAN	2	3	6	12	8
CHI	1	2	8	4	7
FRA	3	2	4	8	10
GER	3	1	6	5	4
IND	4	1	8	10	5
ITA	2	4	10	9	8
MEX	1	5	4	6	3
RUS	4	3	7	9	12
SPA	2	3	4	5	11
TUR	7	2	3	4	8
UK	1	2	3	6	7
US	1	2	4	3	5

Top 5 drugs: country-level sales rank

RANK	1	2	3	4	$5+$

COUNTRY। DRUG

	A	B	C	D	E
Australia	1	2	3	6	7
Brazil	1	3	4	5	6
Canada	2	3	6	12	8
China	1	2	8	4	7
France	3	2	4	8	10
Germany	3	1	6	5	4
India	4	1	8	10	5
Italy	2	4	10	9	8
Mexico	1	5	4	6	
Russia	4	3	7	9	12
Spain	2	3	4	5	11
Turkey	7	2	3	4	8
United Kingdom	1	2	3	6	7
United States	1	2	4	3	5

Preattentive attributes in graphs

A simple test

- Create your visual
- Close your eyes or look away
- Look back at it: where are your eyes drawn first?

Preattentive attributes in graphs

Things to pay attention to

- use colors consistently: change in colors suggests change in meaning!
- 8% of men and $.5 \%$ of women are colorblind (no shades of red/ no shades of green)
- use vischeck.com to simulate what a colorblind person would see

Epistemic problems in data analysis

Key epistemic problems

Epistemology

The branch of philosophy that deals with the nature, origin, and scope of our knowledge.

Key epistemic problems

Epistemology
The branch of philosophy that deals with the nature, origin, and scope of our knowledge.

The usual epistemic flaws

- Assuming that the data we are using is a perfect reflection of reality
- Forming conclusions about the future based on historical data only
- Seeking to use data to verify a previously held belief rather than to test it to see whether it's actually false

Why care?

Car driving

We don't need to know how the car works to drive it!

Why care?

Car driving

We don't need to know how the car works to drive it!

Data analysis
This is more like cooking, you need to know what goes it and how it's combined!

Data-reality gap

Examples

- It's not crime, it's reported crime.
- It's not the outer diameter of a mechanical part, it's the measured outer diameter.
- It's not how the public feels about a topic, it's how people who responded to the survey are willing to say they feel.

Meteorites

The Meteological Society provides data for 34,513 meteorites that struck the surface of the earth between 2500 BCE and 2012.

EVERY RECORDED METEORITE IMPACT ON EARTH FROM 2,500 BCE TO 2012 Where have they fallen?

Meteors landing (map by Ramon Martinez)

Meteorites

Meteors landing (map by Ramon Martinez)

Question

Why this doesn't tell us where meteorites are more likely to strike the Earth?

Meteorites

Meteors landing (map by Ramon Martinez)

Question

Why this doesn't tell us where meteorites are more likely to strike the Earth?

Answer

It tells us where meteorites are more likely to have fallen (in the past), and were observed by someone who reported it to someone who recorded it faithfully.

Meteors

Reported meteors landing in time

Earthquakes

The United States Geological Survey provides an Earthquake Archive Search.

200- Are Earthquakes on the Rise? Worldwide magnitude 6.0+ from 1900-2013

Earthquakes

The United States Geological Survey provides an Earthquake Archive Search.
200. Are Earthquakes on the Rise? Worldwide magnitude 6.0+ from 1900-2013

Question

Why isn't this a cause for alarm?

Earthquakes

Actual vs. Recorded:

120- Advances in seismology lead to 140

> By 1965, 111 WWSSN (Worid Wide Standardized Seismic Network) stations installed

120	
100	
$80-$	
	Magnitude
60-	6.0-6.9
	7.0-7.9
	$8.0-8.9$
$40-$	$9.0+$

> 1961: The Abuquerque Seismological Laboratory (ASU) establighed

Sources | Data: http/learthquake usqs qoviearthquakes/search $/$, Dates: http:/pubs.usqs.qov/fs/2011/3065/pd/FS11-3065.pdf

Bicycles

The City of Seattle Department of Transportation has installed two inductive loops on the pedestrian/bicycle pathways of the bridge.

Fremont Bridge, Seattle (the most opened drawbridge in the United States, $35 /$ day)

Bicycles

Fremont Bridge Bike Counter Time Series, Oct 2012 - Oct 2014

Data source: htp:/Mww.seattle,oov/ransportation/bikecounter fremonthtm

Bicycles

Fremont Bridge Bike Counter Time Series, Oct 2012 - Oct 2014

Data source: http:/Www.seattle.qow/ransportation/bikecounter fremonthtm

Think!

Bicycles

Fremont Bridge Bike Counter Time Series, Oct 2012 - Oct 2014

Data source: http:/Www.seattle. qow/ransportation/bikecounter fremonthtm

Think!

Equipment error
Now the dataset is fixed by averaging.

Ebola

Ebola deaths in West Africa, 2014

Data Source: httpi//wowicdsoov/vhf/ebola/outbreaks/2014-west-africa/cumulative-cases-graphs,html

WHO fatalities count

Ebola

Ebola deaths in West Africa, 2014

Data Source: http://wnwwickoov/vhf/ebola/outbreaks/2014-west-africa/cumulative-cases-graphs/html

WHO fatalities count
Important distinction
Suspected/probable/confirmed.

A wider perspective so far

- measurement systems change
- definitions change
- missing data
- misclassified data

The fudging

Reported strikes by minute of the hour, non-null values

The number of minutes past the hour that pilots provide when they report to the FAA that their aircraft struck wildlife, $\mathrm{n}=85 \mathrm{k}$

[^1]
The fudging

This looks kinda normal, right?

The fudging

2017-18 NBA Player Weight (in Ibs)

How about now?

The fudging

2018 NFL Active Players (2,875 players)

Another example, footbal players

Inconsistent ratings

The task (Ben Jones)
Rate a series of 10 banana photos on a ripeness scale: unripe, almost ripe, ripe, very ripe, or overripe

Images tested on 231 respondents; do you see anything tricky here?

Inconsistent ratings

The task (Ben Jones)
Rate a series of 10 banana photos on a ripeness scale:
unripe, almost ripe, ripe, very ripe, or overripe

Images tested on 231 respondents; do you see anything tricky here?

Look at bananas 2 and 10 !

Inconsistent ratings

85 respondents had inconsistent ratings for the repeated banana.

Inconsistent ratings

How respondents changed ripeness rating from photo \#2 (left) to \#10 (right)

Sankey diagram of opinion change

Inconsistent ratings

The 10th photo was a mirror image of the 2nd photo. 37\% of respondents give the mirror image a different ripeness level than they gave the original one. See how they changed their rating in the table below.

Here's the 10th photo shown in the set, and how respondents rated it based on how they rated the 2nd photo:

Unripe Almost Ripe Ripe Very Ripe Overripe
Here's the 2nd photo shown in the set, and how respondents rated it, broken down by how they rated the 10th photo:

	Unripe	Almost Ripe	Ripe	Very Ripe	Overripe	Total
Unripe	(3)	2	-	-		7
Almost Ripe	-		30			56
Ripe		4	110	37		151
Very Ripe			3			15
Overripe				-	-	2
	4	26	144	56	1	231

Inconsistent ratings

The ninth banana

General points here

- Our ratings and opinions have a degree of noise in them, even over short time horizons, and that we're possibly influenced to some degree by the context

General points here

- Our ratings and opinions have a degree of noise in them, even over short time horizons, and that we're possibly influenced to some degree by the context
- Every measurement system has some degree of error due to challenges with repeatability and reproducibility.

What to do?

Keep in mind!
Every data point that exists was collected, stored, accessed, and analyzed via imperfect processes by fallible human beings dealing with equipment that has built-in measurement error.

What to do?

Keep in mind!
Every data point that exists was collected, stored, accessed, and analyzed via imperfect processes by fallible human beings dealing with equipment that has built-in measurement error.

Do your homework!
The more we know about these processes-the equipment used, the protocol followed, the people involved, the steps they took, their motivations-the better equipped we will be to assess the data-reality gap.

What to do

Key steps

- Clearly understand the operational definitions of all metrics.

What to do

Key steps

- Clearly understand the operational definitions of all metrics.
- Draw the data collection steps as a process flow diagram.

What to do

Key steps

- Clearly understand the operational definitions of all metrics.
- Draw the data collection steps as a process flow diagram.
- Understand the limitations and inaccuracies of each step in the process.

What to do

Key steps

- Clearly understand the operational definitions of all metrics.
- Draw the data collection steps as a process flow diagram.
- Understand the limitations and inaccuracies of each step in the process.
- Identify any changes in method or equipment over time.

What to do

Key steps

- Clearly understand the operational definitions of all metrics.
- Draw the data collection steps as a process flow diagram.
- Understand the limitations and inaccuracies of each step in the process.
- Identify any changes in method or equipment over time.
- Seek to understand the motives of the people collecting and reporting. Could there be any biases or incentives involved?

What to do

Key steps

- Clearly understand the operational definitions of all metrics.
- Draw the data collection steps as a process flow diagram.
- Understand the limitations and inaccuracies of each step in the process.
- Identify any changes in method or equipment over time.
- Seek to understand the motives of the people collecting and reporting. Could there be any biases or incentives involved?
- Visualize the data and investigate any shifts, outliers, and trends for possible discrepancies.

Confirmation bias

How about. . .
... we use data to verify our hypotheses?

Confirmation bias

How about. . .
... we use data to verify our hypotheses?

No!

Focus in finding out what isn't true about our previously held conceptions about the world we live in, and to suggest additional questions for which we don't have any answers yet!

Confirmation bias

The induction step

We often assume that singular statements that we encounter in data verify universal truths, beyond the time, place, and conditions in which data were collected.

- t's not just how many times bikes crossed the Fremont bridge in April 2014, it's how many bikes cross the bridge in general.
- It's not just the preference of certain particular customers, it's the preference of all other potential customers as well.
- It's not just that the pilot manufacturing line had high yields during qualification, it's that the process will also have high yields at full volume production as well.
- It's not just that a particular mutual fund outperformed all others last year, it's that it'll be the best investment going forward.

Unfalsifiability

The problem
Either we form a hypothesis that isn't falsifiable, or we do our best to protect our hypothesis from any possible attempt to show it to be false.

Unfalsifiability

The problem
Either we form a hypothesis that isn't falsifiable, or we do our best to protect our hypothesis from any possible attempt to show it to be false.

Ask yourself

Do we actively seek to prove our own hypotheses to be false, to debunk our own myths, or do we mostly try to prove ourselves right and others wrong?

Leaps in reasoning

The faulty process

1. Basic question \Rightarrow
2. Data analysis \Rightarrow
3. Singular statement \Rightarrow (unaware of the inductive leap)
4. Belief in a universal statement

Leaps in reasoning

The faulty process

1. Basic question \Rightarrow
2. Data analysis \Rightarrow
3. Singular statement \Rightarrow (unaware of the inductive leap)
4. Belief in a universal statement

Example

1. A bicycle counter on the Fremont bridge! Let's learn about ridership in my city.
2. Okay, I found some data from the Seattle Department of Transportation, and it looks like...
3. 49,718 crossed in the eastbound direction, and 44,859 crossed headed west in April 2014.
4. Hmm, so more bicycles cross the bridge headed east than west, then. I wonder why that is? Maybe some riders cross to get to work in the morning but ride the bus home.

Leaps in reasoning

A better process

1. Basic question \Rightarrow
2. Data analysis \Rightarrow
3. Singular statement \Rightarrow
4. Falsifiable universal statement hypothesis \Rightarrow
5. An honest attempt to disprove it

Leaps in reasoning

A better process

1. Basic question \Rightarrow
2. Data analysis \Rightarrow
3. Singular statement \Rightarrow
4. Falsifiable universal statement hypothesis \Rightarrow
5. An honest attempt to disprove it

Example

4. Hmm, so the counters registered higher counts in the eastbound direction as compared to westbound that month. I wonder whether all months have seen higher counts going east as opposed to west?
5. Let me see whether that's not the case.

Leaps in reasoning

Fremont Bridge Bike Counter Measurements

The hypothesis was false, and the differences are minor

Technical and mathematical problems

Data wrangling

What is it?

- Pre-processing raw data to obtain something susceptible to visualisation and analysis.
- Not sexy, but important.
- $50-80 \%$ of the work.

Data wrangling

What is it?

- Pre-processing raw data to obtain something susceptible to visualisation and analysis.
- Not sexy, but important.
- $50-80 \%$ of the work.

Every data is dirty

- misspelled text values
- date format issues
- mismatching units
- missing values
- null values
- incompatible geospatial coordinate formats
- ...

Data wrangling

The Baltimore City Department of Transportation provides a downloadable record of over 61300 car tow events dating from January 2017 back to October 2012.

1	A	8	C	D	E	F	G	H	1	1	
1	propertinumber	towedDatelime	vehicleType v	wehicleYear	vehicleMake	vehicleModel	whicleColor	tagNumber	towCompany	towCharge	towedFromlecation
2	P206813	10/23/10 10:50	Car	99	Mercedes	C230	Bure	7EVM54	Jim Eliotts Towing	\$140.00	200 Longwood Rd
3	P206814	20/23/20 11:00	Car	91	tens	15400	Gray	EXV405	Bermans Towing	\$140.00	700 W Fayette 5t
4	P206815	10/23/10 11:35	Car	4	Chevrolet	Cavaler	Blue	9 RWB \%	Frankford Towing	\$130.00	500 Grundy St
5	P206816	10/23/20 12:04	Scooter	8	Velocity		Black		Bermans Towing	\$140.00	2100 North Ave
6	F011135	10/24/10 12:38	van		texus			96407	City	\$130.00	U/B W HUGHES ST.
7	P206905	10/25/20 11:12	suv	6	Teyota	RAV4	Blue	41093804	Cherryhill Towing Service	\$240.00	200 Fredhilton Pass
8	P206914	10/25/20 14:49	Car	97	Hyundal	Tiburon	And	385791	City	\$140.00	1 NPacast
9	P207054	10/25/10 14:53	Car	95	Honda	Accord	Burgundy	A219155	Fellsway	\$140.00	600 N Caroline St
10	P209809	12/20/108:41	Suv	0	leep	Cherokee	White	27415M5	Fallsway	\$130.00	200 Monroe St
11	P209807	12/20/10 16-45	Car	93	Monda	Accord	Brown	$4 \mathrm{EL575}$	Fallsway	\$130.00	1400 E Monument St
12	P209808	12/21/107:37	Car	95	Bmw	3181	White	$4 \mathrm{EDT18}$	Fallsway	\$130.00	100 S Greene St
13	P209775	12/22/20 12:35	Car	98	Pomtaic	Grand Prix	Aed	3FSH05	City	\$130.00	3719 Greenmount Ave
14	P209776	12/22/10 12:41	Car	0	Nissan	Maxima	Alack	$96 C 055$	Bermans Towing	\$140.00	1400 Russell St
15	P20977	12/22/2012:45	Van	97	Mercury	Villager	Green		Bermans Towing	\$140.00	500 N Carey St
16	P209778	12/22/10 13:10	Car	93	Mitsublshi	Diamante	Sliver		Aarons Automotive Services	\$130.00	900€ 22nd St
17	P209779	12/22/20 13:25	Pick-up Truc	3 l	Ford	F350	Alack	835213	Aarons Automotive Services	\$130.00	2100 N Wolle St
18	P209780	12/22/10 13:30	Van	99	Chevrolet	Astro	White		City	\$130.00	2000 Ellsworth St
19	P209781	12/22/20 13:37	Car	0	Dodge	Stratus	Silver	$9 \mathrm{FiC68}$	Frankford Towing	\$130.00	1500 E Belvedere Ave
20	P209782	12/22/10 14:15	Plekup True	- 91	Ford	F150	Red/siliver	480235	City	\$130.00	200 S Elwood Ave
21	P209783	12/22/1014:26	Car	98	Honde	Accord	3lack	$9 \mathrm{CaC4902}$	Aarons Automotive Services	\$130.00	2800 Harford Rd
22	P209785	12/22/10 14:36	Car	98	Buick	Lesabre	Tan	7403187	City	\$140.00	1600 Gwynn Falls Parkway
23	P209786	12/22/10 14:38	Car	99	Ford	Taurus	Bleck	7ap3025	Frankford Towing	\$130.00	500 N Luzerse
24	P209788	12/22/10 14:40	Traler	$?$	Ez loader	Hydra-Sports	Silver	A 67474	City	\$130.00	4020 Belle Ave
25	P209784	12/22/2014:40	Boat	75	Sportcratt	Caprice	White	1703 PN	City	\$130.00	2020 Belle Ave
26	P209787	12/22/10 16:57	suv		tens	803330	Silver	33742 Cs	Franiford Towing	\$130.00	3000 Mayfield

Data wrangling

Average year of manufacture: 23. What?

Original Vehicle Year

Add2000 to years between 0 and 17 and 1900 to years greater than that

Data wrangling

Long tail

Corrected Vehicle Year: Add 2000 to Years 0-17 and add 1900 to all other years

Data wrangling

Long tail

Outlier Vehicle Years

Data wrangling

Misspelled makes

Chevrolet, Chevy, Cheverolet, Chevolet, Peterbilt, Peterbutt, Mitshubishi, Mitsubishit,

Data wrangling

Misspelled makes

Data wrangling

Misspelled makes

Data wrangling

Google Analytics map of website views; say we want to compare to population.

Data wrangling

Two population lists

- World Bank web, 2016 country population
- Wikipedia

Data Set	
Number of Sets	
3	Set 2
Section Details	WorldBank
Set 1	Set 3
Google Analytics	228
180	Wikipedia

Data wrangling

- WB list contains 82 grouped values, can you do inner join?

Data wrangling

- WB list contains 82 grouped values, can you do inner join?

WorldBank List	Google Analytics List	Pageviews
Mull	Antipua 5 llartuda	27
	Bahamas	11.881
	Bomnas Herregovina	14,400
	Arume	2.618
	Cape Verde	3.978
	Congo-Irazraville	817
	Congo-Kinylase	1.305
	Cbte flvoire	2.067
	Crechia	88.218
	Egypt	54,916
	Entres	457
	Gambia	330
	Guernsey	694
	Hongkong	238.493
	Iran	53,667
	dersey	589
	Errgystan	212
	Laos	1.627
	Macau	3.959
	Macedonia (EYROM)	4.386
	Martinique	2.043
	Myarmar (Burna)	21,493
	Pelestine	1,506
	Reunion	6.170
	Russia	315,740
	Siovaia	34,755
	South Kores	313.568
	St. Kitts 8 Nievis	477
	Syria	771
	Tawan	460.819
	Trinidad a Tabogo	12.554
	US. Virgin lsands	175
	Venervela	27.805
	Yemen	6.867

Differences in country lists

Mathematical problems

- Summing quantities to various levels of aggregation, such as buckets of time - the amount of some quantity per week, or month, or year
- Dividing quantities in our data with other quantities in our data to produce rates or ratios
- Working with proportions or percentages
- Converting from one unit of measure to another

Mathematical problems

Strikes by month, all years

Recorded wildlife strikes by month (raw)

Mathematical problems

Timeline of recorded wildlife strikes

Mathematical problems

Granularity shift reveals the source of the problem

Mathematical problems

Cooks' strait (vs. Abel Tasman, 1642)

Mathematical problems

Strikes by month, bars segmented by years

Strikes again, now with attention

Mathematical problems

Infectious diseases contracted by California residents from 2001 through 2015, Center for Infectious Diseases, California Department of Public Health.

_id IE	Disease 11	County If	Year 11	Sex 11	Count IT	Population 11	Rate It	Cl.lower IT	Cl.upper IT	Unstable IT
1	Amebiasis	California	2001	Female	176	17339700	1.015	0.871	1.177	
2	Amebiasis	California	2001	Male	365	17173042	2.125	1.913	2.355	
3	Amebiasis	California	2001	Total	541	34512742	1.568	1.438	1.705	
4	Amebiasis	California	2002	Female	145	17554666	0.826	0.697	0.972	
5	Amebiasis	California	2002	Male	279	17383624	1.605	1.422	1.805	
6	Amebiasis	California	2002	Total	424	34938290	1.214	1.101	1.335	
7	Amebiasis	California	2003	Fermale	127	17782868	0.714	0.595	0.85	
8	Amebiasis	Calfornia	2003	Male	261	17606060	1.482	1.308	1.674	
9	Amebiasis	California	2003	Total	388	35388928	1.096	0.99	1.211	
10	Amebiasis	California	2004	Female	101	17968347	0.562	0.458	0.683	

Head of the diseases dataset

Mathematical problems

Question
Are there more for male or female?

Mathematical problems

Question

Are there more for male or female?
Reported Infectious Diseases, California Residents, 2001-2015

Mathematical problems

How are they distributed in the counties?

Mathematical problems

How are they distributed in the counties?

What's "1 unknown"?

Mathematical problems

How are they distributed in the counties?

What's "1 unknown"? California!

Mathematical problems

How are they distributed in the counties?

Wait, so we were...
counting twice for each gender, and then twice again for each county!

Mathematical problems

The World Bank data set with estimates of the percent of each country's population that lives in an urban environment. From 33.6% in 1960 to 54.3\%in 2016.

Mathematical problems

Percent Urban Population, 2016

Region	Country Name	Pct Urban Population
North America	Bermuda	100.00%
	Canada	82.01%
	United States	81.79%

Let's think about North America
Question
How to calculate the percent for the entire region from these three country-level figures?

Mathematical problems

Percent Urban Population, 2016		
Region	Country Name	Pct Urban Population
North America	Bermuda	100.00%
	Canada	82.01%
	United States	81.79%
Average		87.93%

Mathematical problems

Percent Urban Population, 2016		
Region	Country Name	Pct Urban Population
North America	Bermuda	100.00%
	Canada	82.01%
	United States	81.79%
Average		87.93%

Mathematical problems

Percent Urban Population, 2016

Region	Country Name	Pct Urban Population
North America	Bermuda	100.00%
	Canada	82.01%
	United States	81.79%
Average		87.93%

Let's average! Or wait. .
mean $\left(\frac{\text { urban US }}{\text { total US }}, \frac{\text { urban Canada }}{\text { total Canada }}, \frac{\text { urban Bermuda }}{\text { total Bermuda }}\right) \neq \frac{\text { urban US }+ \text { urban Canada }+ \text { urban Bermuda }}{\text { total US }+ \text { total Canada }+ \text { total Bermuda }}$

Mathematical problems

Percent Urban Population, 2016

Region	Country Name	Calc Urban Pop Pct (for aggregation)	Total population	Calculated Urban Pop
North America	Bermuda	100.00%	65,376	65,376
	Canada	82.01%	$36,264,604$	$29,739,151$
	United States	81.79%	$323,127,513$	$264,279,530$
Grand Total	81.81%	$359,457,493$	$294,084,057$	

You need the totals before you calculate!

Mathematical problems

A general picture

Mathematical problems

Mathematical problems

- cost or revenue with different currencies
- inventory with different units of measure: units, boxes, palettes etc.
- temperatures: Celsius, Fahrenheit, Kelvin
- doing math with any quantity with suffixes such as K or M
- latitude and longitude in degrees minutes seconds (DMS) versus decimal degrees (dd)
- working with 2-D spatial location using cartesian versus polar coordinates
- working with angles in degrees versus radians
- shipping dates when working with calendar days versus business days

Mathematical problems

- cost or revenue with different currencies
- inventory with different units of measure: units, boxes, palettes etc.
- temperatures: Celsius, Fahrenheit, Kelvin
- doing math with any quantity with suffixes such as K or M
- latitude and longitude in degrees minutes seconds (DMS) versus decimal degrees (dd)
- working with 2-D spatial location using cartesian versus polar coordinates
- working with angles in degrees versus radians
- shipping dates when working with calendar days versus business days

Solution

Prepare or read carefully the metadata.

[^0]: Label directly or pull apart using the same x-axis; note you imply a connection!

[^1]: Note the geometric regularity

