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Sherlock’s naivete
A rather unhelpful piece of advice
"...when you have eliminated the impossible, whatever remains, however,
improbable, must be the truth."
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Trouble in paradise

Data have only probabilistic relations to hypotheses
Many people may have similar footprints

Measurements only probabilistically narrow down the range
We mathematically can describe the footprints up to some level
of precision

Association does not directly translate into causation
There may be various confounding factors explaining why people
who received a given drug have lower blood pressure

There often is natural variation
The weight of a newborn baby may vary naturally due to genetics
and environmental factors, rather than a specific cause



4/ 18

Wayne Williams case
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Two items of evidence

Dog hair evidence, random match probability (RMP) is about
0.0256.
Human hair evidence, RMP is about 0.0253

Questions that come to mind?
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Let’s focus on dog fur
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Ways dogs could be (likelihoods)
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Updating with new observations
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Now with probabilities

p ways0 ways0pr ways1 ways1pr
0.00 0 0.00 0 0.0000000
0.25 3 0.15 3 0.0652174
0.50 8 0.40 16 0.3478261
0.75 9 0.45 27 0.5869565
1.00 0 0.00 0 0.0000000
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More dogs, Bayesian style!

P(C = c, H = h|θ) = (c + h)!
c!h! θc(1 − θ)h

P(A, B) = P(A|B)P(B)

H ∼ Binomial(N, θ)
θ ∼ Uniform(0, 1)

P(c, h, θ) = P(c, h|θ)P(θ)
P(c, h, θ) = P(θ|c, h)P(c, h)

P(θ|c, h)P(c, h) = P(c, h|θ)P(θ)

P(θ|c, h)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P(c, h|θ)

prior︷︸︸︷
P(θ)

P(c, h)︸ ︷︷ ︸
(average)data
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The underlying mechanism

plausibility(hypothesis n|data) ∝
ways hypothesis n can produce data × prior plausibility of hypothesis n
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Back to the fur testimony (grid approximation)

theta <- seq(0,1, length.out = 10001)
prior <- rep(1/10001,10001)

likelihoodDog <- dbinom(2,78, theta)
likelihoodHuman <- dbinom(29,1148, theta)

posteriorDogUnst <- likelihoodDog * prior
posteriorHumanUnst <- likelihoodHuman * prior

posteriorDog <- posteriorDogUnst/sum(posteriorDogUnst)
posteriorHuman <- posteriorHumanUnst/sum(posteriorHumanUnst)
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Back to the fur testimony (grid approximation)
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Steps of Bayesian data analysis

1. Identify the data, variables, predictors
2. Define a descriptive and appropriate model
3. Specify a prior distribution (over parameters)
4. Use Bayesian inference to reallocate credibility in light of the

training data
5. Test whether the posterior predictions are reasonable as compared to

validation data
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Build your first model!

dogsModel <- quap(
alist(

h ~ dbinom( h + c , theta),
theta ~ dunif(0,1)

) ,
data=list(h=50,c=13) )
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Build your first model!
precis(dogsModel)

## mean sd 5.5% 94.5%
## theta 0.7936496 0.05098465 0.7121663 0.8751329

par(cex.axis=1.5, cex.lab=1.5)
plot(precis(dogsModel))
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Liar detectors

The task
Out of 100 suspects, 10 are guilty
Polygraph sensitivity (P(+|T )) and specificity (P(−|F )) are 70%
A suspect is polygraph-positive
So what?

Population considerations
Out of 10 000 suspects, 1000 will be guilty, 9 000 will not
Out of 1000 guilty, 700 will be positive, out of 9 000 innocent, 2700
So out of 2700+700 positive, 700 will be guilty. That’s around
20.5%.
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Liar detectors

pos_if_g = .7
pos_if_ng = .3
g = .1

pos = ( pos_if_g * g + pos_if_ng * (1-g) )

g_if_pos = ( pos_if_g * g ) / pos

g_if_pos

## [1] 0.2058824


