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Abstract. We conduct a large scale data-driven analysis of the effects of online
personal attacks on social media user activity. First, we perform a thorough overview
of the literature on the influence of social media on user behavior, especially on the
impact that negative and aggressive behaviors, such as harassment and cyberbullying,
have on users’ engagement in online media platforms. The majority of previous
research were small-scale self-reported studies, which is their limitation. This
motivates our data-driven study. We perform a large-scale analysis of messages
from Reddit, a discussion website, for a period of two weeks, involving 182,528
posts or comments to posts by 148,317 users. To efficiently collect and analyze the
data we apply a high-precision personal attack detection technology. We analyze the
obtained data from three perspectives: (i) classical statistical methods, (ii) Bayesian
estimation, and (iii) model-theoretic analysis. The three perspectives agree: personal
attacks decrease the victims’ activity. The results can be interpreted as an important
signal to social media platforms and policy makers that leaving personal attacks
unmoderated is quite likely to disengage the users and in effect depopulate the
platform. On the other hand, application of cyberviolence detection technology in
combination with various mitigation techniques could improve and strengthen the
user community. As more of our lives is taking place online, keeping the virtual
space inclusive for all users becomes an important problem which online media
platforms need to face.

Remark. In what follows, we sometimes display key pieces of code and explain what it does.
Some not too fascinating pieces of code are supressed, but the reader can look them up in the
associated .Rmd file and compile their own version.

1 Technology applied for personal attack detection

For the need of this research we define personal attack as any kind of abusive remark made in
relation to a person (ad hominem) rather than to the content of the argument expressed by that
person in a discussion. The definition of ‘personal attack’ subsumes the use of specific terms
which compare other people to animals or objects or making nasty insinuations without providing
evidence. Three examples of typical personal attacks are as follows.

• You are legit mentally retarded homie.
• Eat a bag of dicks, fuckstick.
• Fuck off with your sensitivity you douche.
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The detection of personal attacks was performed using Samurai, a proprietary technology of
Samurai Labs.1 The technology comprises a combination of symbolic and statistical methods,
where each statistical component (e.g., a deep learning model) is governed by a symbolic
component utilizing a variety of natural language processing methods (e.g., tokenization, syntactic
parsing, etc.). Symbolic components are used to determine if a potentially abusive utterance is
not a part of a broader utterance indicating that the first one should not be considered abusive. For
example, an utterance “you are an idiot” is potentially abusive, but it really is not, if it appears
as a part of some broader utterance such as “I cannot believe he said you are an idiot.” Another
example of using symbolic components is determining if an abusive phrase is targeted against an
interlocutor (e.g. using a linking verb to assign the abusive phrase with a second person as in the
“you are an idiot” example).

Samurai (Wroczynski & Leliwa, 2019) employs a compositional approach, where each problem
is divided into a set of corresponding sub-problems represented with language phenomena
(e.g., speech acts), and detected independently using highly precise contextual models. For
example, personal attacks comprise a high-level category that can be divided into language
phenomena (mid-level categories) such as insulting (using abusive terms in relation to other
people), comparing other people to animals (e.g., “looks like a pig”) or objects (e.g., “smells
like an old sock”), or making insinuating remarks (e.g., “I heard she had sex with her students”).
Furthermore, each mid-level category can be further decomposed into low-level categories. For
example, insulting can be expressed by using a linking verb (e.g., “you are an idiot”) or a vocative
case (e.g. “stop talking to me, idiot”).

Figure 1 illustrates how the input text (“ccant believ he sad ur an id10+. . . !”) is processed
step-by-step utilizing both statistical and symbolic methods.

Figure 1: Example of processing of one sentence by the applied Samurai technology.

In practice, it means that a whole variety of constructions can be detected without the need to
construct a fixed list of dictionary words defined a priori. Due to utilizing symbolic components
that oversee statistical components, {Samurai} recognizes complex linguistic phenomena (such
as indirect speech, rhetorical figures or counter-factual expressions) to distinguish personal
attacks from normal communication, greatly reducing the number of false alarms as compared to
others systems used for violence detection. An example of comparison can be seen in Figure 1,
and a full benchmark was presented in (Ptaszyński et al., 2018).

The detection models utilized in this research were designed to detect personal attacks targeted

1https://www.samurailabs.ai/, described in (Ptaszyński, Leliwa, Piech, & Smywiński-Pohl, 2018; Wroczynski & Leliwa,
2019).
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against a second person (e.g. interlocutor, original author of a post) and a third person/group
(e.g., other participants in the conversation, people not involved in the conversation, social
groups, professional groups), except public figures (e.g. politicians, celebrities). With regards to
symbolic component of the system, by “models” we mean separate rules (such as, specifying
a candidate for the presence of personal attack, such as the aggressive word “idiot,” which is
further disambiguated with a syntactic rule of citation, e.g., “[he|she|they] said [SUBJECT]
[PREDICATE]”) or sets of rules, as seen in Figure 1, e.g. normalization model contains rules for
transcription normalization, citation detection model contains rules for citation, etc. With regards
to the statistical component, by “models” refer to machine learning models trained on large data
to classify an entry into one of the categories (e.g., true personal attack, or false positive).

Moreover, the symbolic component of the system uses two types of symbolic rules, namely
“narrow rules” and “wide rules.” The former have smaller coverage (e.g., are triggered less often),
but detect messages containing personal attacks with high precision.2 The latter, have wider
coverage, but their precision is lower. We decided to set apart the “narrow” and “wide” subgroups
of the detection models in order to increase the granularity of the analysis. Firstly, we took only
the detection models designed to detect personal attacks targeted against second person. Secondly,
we used these models on a dataset of 320,000 Reddit comments collected on 2019/05/06. Thirdly,
we randomly picked at most hundred returned results for each low-level model3 (some models
are triggered very often while others rarely, so using all instances would create too much bias).
There were 390 low-level models but many of them returned in less than 100 results. We verified
them manually with the help of expert annotators trained in detection of personal attacks and
selected only those models that achieved at least 90% of precision. The models with fewer than
100 returned results were excluded from the selection. After this step, the “narrow” subgroup
contained 43 out of 390 low-level models. Finally, we tested all of the “narrow” models on a
large dataset of 477,851 Reddit comments collected between 2019/06/01 and 2019/08/31 from
two subreddits (r/MensRights and r/TooAfraidToAsk). Each result of the “narrow” models was
verified manually by a trained annotator and the “narrow” models collectively achieved over
93.3% of precision. We also tested the rest of the “wide” models on random samples of 100
results for each model (from the previous dataset of 320,000 Reddit comments) and we excluded
the models that achieved less than 80% precision. The models with fewer than 100 results were
not excluded from the “wide” group. In this simple setup we detected 24,251 texts containing
“wide” attacks, where:

• 5,717 (23.6%) contained personal attacks against second person detected by the "narrow"
models,

• 8,837 (36.4%) contained personal attacks against second person detected by "wide" models
• 10,023 (41.3%) contained personal attacks against third persons / groups. The sum exceeds

100% because some of the comments contained personal attacks against both second
person and third person / groups. For example, a comment “Fu∗∗ you a∗∗hole, you know
that girls from this school are real bit∗∗es" contains both types of personal attack.

Additionally, from the original data of 320,000 Reddit posts we extracted and annotated 6,769
Reddit posts as either a personal attack (1) or not (0). To assure that the extracted additional
dataset contains a percentage of Personal Attacks sufficient to perform the evaluation, the Reddit
posts were extracted with an assumption that each post contains at least one word of a general
negative connotation. Our dictionary of such words contains 6,412 instances, and includes a
wide range of negative words, such as nouns (e.g., “racist”, “death”, “idiot”, “hell”), verbs (e.g.,
“attack”, “kill”, “destroy”, “suck”), adjectives (e.g., “old”, “thick”, “stupid”, “sick”), or adverbs
(e.g., “spitefully”, “tragically”, “disgustingly”). In the 6,769 additionally annotated Reddit
samples there were 957 actual Personal Attacks (14%), from which Samurai correctly assigned
709 (true positives) and missed 248 (false negatives), which accounts for 74% of the Recall rate.
Finally, we performed another additional experiment in which, we used Samurai to annotate
completely new 10,000 samples from Discord messages that did not contain Personal Attacks
but contained vulgar words. The messages were manually checked by two trained annotators

2Precision is defined traditionally as the ratio of correctly detected instances among all detected instances.
3Low-level models are responsible for detecting low-level categories. Similarly, mid-level models detect mid-level

categories, by combining several low-level models, etc.

3



and one additional super-annotator. The result of Samurai on this additional dataset was a 2% of
false positive rate, with exactly 202 cases misclassified as personal attacks. This accounts for
specificity rate of 98%.

2 Study design, data collection, and dataset description

The raw datasets used have been obtained by Samurai Labs, who were able to collect Reddit posts
and comments without Reddit moderation or comment removal. All content was downloaded
from the data stream provided by pushshift.io which enabled full data dump from Reddit in
real-time. The advantage of using it was access to unmoderated data.4 Further, Samurai Labs
deployed their personal attacks recognition algorithms to identify personal attacks.

In the study, experimental manipulation of the crucial independent variables (personal attacks
of various form) to assess their effect on the dependent variable (users’ change in activity) would
be unethical and against the goal of Samurai Labs, which is to detect and prevent online violence.
While such a lack of control is a weakness as compared to typical experiments in psychology, our
sample was both much larger and much more varied than the usual WEIRD (western, educated,
and from industrialized, rich, and democratic countries) groups used in psychology.5 For instance,
(Wise, Hamman, & Thorson, 2006) examined 59 undergraduates from a political science class
at a major Midwestern university in the USA, (Zong, Yang, & Bao, 2019) studied 251 students
and faculty members from China who are users of WeChat, and (Valkenburg, Peter, & Schouten,
2006) surveyed 881 young users (10-19yo.) of a Dutch SNS called CU2.

Because of the preponderance of personal attacks online, we could use the real-life data from
Reddit and use the following study design:

1. All the raw data, comprising of daily lists of posts and comments (some of which were used
in the study) with time-stamps and author and target user names, have been obtained by
Samurai Labs, who also applied their personal attack detection algorithm to them, adding
two more variables: narrow and wide. These were the raw datasets used in further analysis.

2. Practical limitations allowed for data collection for around two continuous weeks (day 0
± 7 days). First, we randomly selected one weekend day and one working day. These
were June 27, 2020 (Saturday, S) and July 02, 2020 (Thursday, R). The activity on those
days was used to assign users to groups in the following manner. We picked one weekend
and one non-weekend day to correct for activity shifts over the weekend (the data indeed
revealed slightly higher activity over the weekends, no other week-day related pattern was
observed). We could not investigate (or correct for) monthly activity variations, because
the access to unmoderated data was limited.

3. For each of these days, a random sample of 100,000 posts or comments have been drawn
from all content posted on Reddit. Each of these datasets went through preliminary user-
name based bots removal. This is a simple search for typical phrases included in user
names, such as “Auto”, “auto”, “Bot”, or “bot”.

For instance, for our initial thursdayClean datased, this proceeds like this:
thursdayClean <- thursdayClean[!grepl("Auto", thursdayClean$author,

fixed = TRUE), ]

thursdayClean <- thursdayClean[!grepl("auto", thursdayClean$author,

fixed = TRUE), ]

thursdayClean <- thursdayClean[!grepl("Auto", thursdayClean$receiver,

fixed = TRUE), ]

thursdayClean <- thursdayClean[!grepl("auto", thursdayClean$receiver,

fixed = TRUE), ]

thursdayClean <- thursdayClean[!grepl("bot", thursdayClean$receiver,

fixed = TRUE), ]

thursdayClean <- thursdayClean[!grepl("Bot", thursdayClean$receiver,

fixed = TRUE), ]

4As of August 20th, the service is not available. For now, one possible way is to use an API provided by Reddit
with a constraint: Reddit allows for 600 requests every 10 minutes. 10 minutes might be a short time in the case
of moderators’ reaction, but is enough for AutoModerator or other automated moderation to exert their force, thus
leading to a moderated, and therefore incomplete dataset.

5Notice, however, that the majority of Reddit users are based in U.S.
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4. In some cases, content had been deleted by the user or removed by Reddit — in such cases
the dataset only contained information that some content had been posted but was later
removed; since we could not access the content of such posts or comments and evaluate
them for personal attacks, we also excluded them from the study.

Again, this was a fairly straightforward use of grepl:
thursdayClean <- thursdayClean[!grepl("none", thursdayClean$receiver,

fixed = TRUE), ]

thursdayClean <- thursdayClean[!grepl("None", thursdayClean$receiver,

fixed = TRUE), ]

thursdayClean <- thursdayClean[!grepl("<MISSING>", thursdayClean$receiver,

fixed = TRUE), ]

thursdayClean <- thursdayClean[!grepl("[deleted]", thursdayClean$receiver,

fixed = TRUE), ]

5. This left us with 92,943 comments or posts by 75,516 users for R and 89,585 comments
by 72,801 users for S. While we didn’t directly track whether content was a post or a
comment, we paid attention as to whether a piece of content was a reply to a post or not
(the working assumption was that personal attacks on posts might have different impact
than attacks on comments). Quite consistently, 46% of content were comments on posts
on both days.

6. On these two days respectively, 1359 R users (1.79%) received at least one narrow attack,
35 of them received more than one (0.046%). 302 of S users (0.39%) received at least one
narrow attack and 3 of them more than one narrow on that day (0.003%). These numbers
are estimates for a single day, and therefore if the chance of obtaining at least one narrow
attack in a day is 1.79%, assuming the binomial distribution, the estimated probability of
obtaining at least one narrow attack in a week is 11.9% in a week and 43% in a month.

100 * round(1-dbinom(0,7,prob = 1359/75516),3)` #week

100 * round(1-dbinom(0,31,prob = 1359/75516),3)` #month

7. To ensure a sufficient sample size, we decided not to draw a random sub-sample from
the wide > 1 or narrow > 1 class comprising 340 users, and included all of them in the
Thursday treatment group (Rtreatment). Other users were randomly sampled from wide >
0 and added to Rtreatment, so that the group count was 1000.

8. An analogous strategy was followed for S. 1338 users belonged to wide > 0, 27 to wide > 1,
329 to narrow > 0 and 3 to narrow > 1. The total of 344 wide > 1 or narrow > 1 users was
enriched with sampled wide > 0 users to obtain the Streatment group of 1000 users.

9. The preliminary Rcontrol/Scontrol groups of 1500 users each were constructed by sampling
1500 users who posted comments on the respective days but did not receive any recognized
attacks. The group sizes for control groups are higher, because after obtaining further
information we intended to eliminate those who received any attacks before the group
selection day (and for practical reasons we could only obtain data for this period after the
groups were selected).

10. For each of these groups new dataset was prepared, containing all posts or comments made
by the users during the period of ±7 days from the selection day (337,015 for Rtreatment,
149,712 for Rcontrol, 227,980 for Streatment and 196,999 for Scontrol) and all comments
made to their posts or comments (621,486 for Rtreatment, 170,422 for Rcontrol, 201,614
for Streatment and 204,456 for Scontrol), after checking for uniqueness these jointly were
951,949 comments for Rtreatment, 318,542 comments for Rcontrol, 404,535 comments for
Streatment, and 380,692 comments for Scontrol). The need to collect all comments to the
content posted by our group members was crucial. We needed this information because
we needed to check all such comments for personal attacks to obtain an adequate count of
attacks received by our group members. In fact, this turned out to be the most demanding
part of data collection.

11. All these were wrangled into the frequency form, with (1) numbers of attacks as recognized
by narrow or wide algorithm (in the dataset we call these high and low respectively), (2)
distinction between attack on comment and attack on post), and (3) activity counts for each
day of the study, (4) with added joint counts for the before and after periods. Frequency
data for users outside of the control or treatment groups were removed.
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12. With the frequency form at hand, we could look at outliers. We used a fairly robust
measure.6 For each of the weekly counts of low, high and activity we calculated the
interquartile range (IQR), as the absolute distance between the first and the third quartile
and identified as outliers those users which landed at least 1.5× IQR from the respective
mean. These resulted in a list of 534 “powerusers” which we suspected of being bots (even
though we already removed users whose names suggested they were bots) — all of them
were manually checked by Samurai Labs. Those identified as bots (only 15 of them) or
missing (29 of them) were removed. It was impossible to establish whether the missing
users were bots; there are also two main reasons why a user might be missing: (a) account
suspended, and (b) user deleted. We decided not to include the users who went missing
in our study, because they would artificially increase the activity drop during the period
and because we didn’t suspect any of the user deletions to be caused by personal attacks
directed against them (although someone might have deleted the account because they
were attacked, these were power-users who have a high probability of having been attacked
quite a few times before, so this scenario is unlikely).

13. The frequency form of the control sets data was used to remove those users who were
attacked in the before period (894 out of 1445 for R, and 982 out of 1447 for S remained).

14. A few more unusual data points needed to be removed, because they turned out to be
users whose comments contained large numbers of third-person personal attacks which in
fact supported them. Since we were interested in the impact of personal attacks directed
against a user on the user’s activity, such unusual cases would distort the results. Six
were authors of posts or comments which received more than 60 wide only attacks each.
Upon inspection, all of them supported the original users. For instance, two of them were
third-person comments about not wearing a mask or sneezing in public, not attacks on
these users. Another example is a female who asked for advice about her husband: the
comments were supportive of her and critical of the husband. Two users with weekly
activity count change higher than 500 were removed – they did not seem to be bots but
very often they posted copy-pasted content and their activity patterns were highly irregular
with changes most likely attributable to some other factors than attacks received. The same
holds for a young user we removed from the study who displayed activity change near
1000. She commented on her own activity during that period as very unusual and involving
50 hrs without sleeping. Her activity drop afterwards is very likely attributable to other
factors than receiving a personal attack.

15. 86 users who did not post anything in the before period were also removed.
16. In the end, R and S were aligned, centering around the selection day (day 8) and the studied

group comprised 3673 users.
# note we load the data here

data <- read.csv("../datasets/quittingFinalAnon.csv")[, -1]

A few first lines of the resulting anonymized dataset from which we removed separate day
counts. Note that in the code “low” corresponds to “wide” (for “low precision”) and “high” to
“narrow” attacks (for “high precision”). The variables are: (low attacks, high attacks, low attacks
on posts, how attacks on posts, authored content posted) and retained summary columns.

• user contains anonymous user numbers.
• sumLowBefore contains the sum of wide attacks in days 1-7. sumHighBefore the sum of

narrow (attacks in the same period.
• Pl and Ph code wide and narrow attacks on posts (we wanted to verify the additional

sub-hypothesis that attacks on a post might have more impact than attacks on comments).
• activityBefore and activityAfter count comments or posts during days seven days before and

seven days after. The intuition is, these shouldn’t change much if personal attacks have no
impact on activity.

6The classic outlier detection method takes a datapoint to be an outlier if it is at least two standard deviations from the
mean. This method is not robust, because it is susceptible to the masking problem: adding an even more extreme
outlier to the data may easily make an outlier look normal. The boxplot rule that we used replaces standard deviation
with the interquartile range which is much less sensitive to outliers.
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Group n

Rcontrol 875
Rtreatment 935
Scontrol 942
Streatment 921

user sumLowBefore sumHighBefore sumPlBefore sumPhBefore activityBefore activityAfter activityDiff group treatment

1 1 0 1 0 2 0 -2 Rtreatment 1
2 5 4 0 0 106 80 -26 Rtreatment 1
3 2 1 0 0 29 31 2 Rtreatment 1
4 6 4 0 0 180 92 -88 Rtreatment 1
5 5 2 0 0 116 95 -21 Rtreatment 1

6 2 0 0 0 124 104 -20 Rtreatment 1

• group and treatment include information about which group a user belongs to.

3 Exploration

First, we visually explore our dataset by looking at the relationship between the number of
received attacks vs. the activity change counted as the difference of weekly counts of posts or
comments authored in the second (after) and in the first week (before). We do this for narrow
attacks (Fig. 2), wide attacks (Fig. 3), where a weaker, but still negative impact, can be observed,
and then we take a look at the impact of those attacks which were recognized as wide only (Fig.
4). The distinction between wide and narrow pertains only to the choice of attack recognition
algorithm and does not directly translate into how offensive an attack was, except that wide attacks
also include third-person ones. Here, the direction of impact is less clear: while the tendency is
negative for low numbers of attacks, non-linear smoothing suggests that higher numbers mostly
third-person personal attacks seem positively correlated with activity change. This might suggest
that while being attacked has negative impact on a user’s activity, having your post “supported”
by other users’ third-person attacks has a more motivating effect. We will look at this issue in a
later section, when we analyze the dataset using regression.

The visualisations in Figure 2 should be understood as follows. Each point is a user. The
x-axis represents a number of attacks they received in the before period (so that, for instance,
users with 0 wide attacks are the members of the control group), and the y-axis represents the
difference between their activity count before and after. We can see that most of the users received
0 attacks before (these are our control group members), with the rest of the group receiving 1,
2, 3, etc. attacks in the before period with decreasing frequency. The blue line represents linear
regression suggesting negative correlation. The gray line is constructed using generalized additive
mode (gam) smoothing, which is a fairly standard smoothing method for large datasets (it is
more sensitive to local tendencies and yet avoids overfitting). The parameters of the gam model
(including the level of smoothing) are chosen by their predictive accuracy.7 Shades indicate the
95% confidence level interval for predictions from the linear model.
library(ggthemes)

th <- theme_tufte()

highPlot <- ggplot(data, aes(x = sumHighBefore, y = activityDiff)) +

geom_jitter(size = 0.8, alpha = 0.3) + geom_smooth(method = "lm",

color = "skyblue", fill = "skyblue", size = 0.7, alpha = 0.8) +

scale_x_continuous(breaks = 0:max(data$sumHighBefore), limits = c(-1,

max(data$sumHighBefore))) + ylim(c(-300, 300)) + geom_smooth(color = "grey",

size = 0.4, lty = 2, alpha = 0.2) + xlab("narrow attacks before") +

ylab("activity change after") + labs(title = "Impact of narrow attacks on activity",

subtitle = "weekly counts, n=3673") + geom_segment(aes(x = -1,

y = -100, xend = 9, yend = -100), lty = 3, size = 0.1, color = "gray71",

alpha = 0.2) + geom_segment(aes(x = -1, y = 100, xend = 9,

yend = 100), lty = 3, size = 0.1, color = "gray71", alpha = 0.2) +

7See the documentation of gam of the mgcv packages for details: https://www.rdocumentation.org/packages/mgcv/
versions/1.8-33/topics/gam.
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geom_segment(aes(x = -1, y = -100, xend = -1, yend = 100),

lty = 3, size = 0.1, color = "gray71", alpha = 0.2) +

geom_segment(aes(x = 9, y = -100, xend = 9, yend = 100),

lty = 3, size = 0.1, color = "gray71", alpha = 0.2) +

th

highPlotZoomed <- ggplot(data, aes(x = sumHighBefore, y = activityDiff)) +

geom_jitter(size = 1, alpha = 0.2) + geom_smooth(method = "lm",

color = "skyblue", fill = "skyblue", size = 0.7, alpha = 0.8) +

th + scale_x_continuous(breaks = 0:max(data$sumHighBefore),

limits = c(-1, 9)) + ylim(c(-100, 100)) + geom_smooth(color = "grey",

size = 0.4, lty = 2, alpha = 0.2) + xlab("narrow attacks before") +

ylab("activity change after") + labs(title = "Impact of narrow attacks on activity",

subtitle = "weekly counts, zoomed in") + geom_hline(yintercept = 0,

col = "red", size = 0.2, lty = 3)

lowPlot <- ggplot(data, aes(x = sumLowBefore, y = activityDiff)) +

geom_jitter(size = 0.8, alpha = 0.3) + geom_smooth(method = "lm",

color = "skyblue", fill = "skyblue", size = 0.7, alpha = 0.8) +

th + geom_smooth(color = "grey", size = 0.4, lty = 2, alpha = 0.2) +

xlab("wide attacks before") + ylab("activity change after") +

labs(title = "Impact of wide attacks on activity", subtitle = "weekly counts, n=3673") +

geom_segment(aes(x = -1, y = -150, xend = 15, yend = -150),

lty = 3, size = 0.1, color = "gray71", alpha = 0.2) +

geom_segment(aes(x = -1, y = 150, xend = 15, yend = 150),

lty = 3, size = 0.1, color = "gray71", alpha = 0.2) +

geom_segment(aes(x = -1, y = -150, xend = -1, yend = 150),

lty = 3, size = 0.1, color = "gray71", alpha = 0.2) +

geom_segment(aes(x = 15, y = -150, xend = 15, yend = 150),

lty = 3, size = 0.1, color = "gray71", alpha = 0.2) +

xlim(c(-1, max(data$sumLowBefore)))

lowPlotZoomed <- ggplot(data, aes(x = sumLowBefore, y = activityDiff)) +

geom_jitter(size = 1, alpha = 0.2) + geom_smooth(method = "lm",

color = "skyblue", fill = "skyblue", size = 0.7, alpha = 0.8) +

th + scale_x_continuous(breaks = 0:max(data$sumLowBefore),

limits = c(-1, 15)) + ylim(c(-150, 150)) + geom_smooth(color = "grey",

size = 0.4, lty = 2, alpha = 0.2) + xlab("wide attacks before") +

ylab("activity change after") + labs(title = "Impact of wide attacks on activity",

subtitle = "weekly counts, zoomed in") + geom_hline(yintercept = 0,

col = "red", size = 0.2, lty = 3)

lowOnlyPlot <- ggplot(data, aes(x = (sumLowBefore - sumHighBefore),

y = activityDiff)) + geom_jitter(size = 0.8, alpha = 0.3) +

geom_smooth(method = "lm", color = "skyblue", fill = "skyblue",

size = 0.7, alpha = 0.8) + th + geom_smooth(color = "grey",

size = 0.4, lty = 2, alpha = 0.2) + xlab("wide only attacks before") +

ylab("activity change after") + labs(title = "Impact of wide only attacks on activity",

subtitle = "weekly counts, n=3673") + geom_segment(aes(x = -1,

y = -150, xend = 15, yend = -150), lty = 3, size = 0.1, color = "gray71",

alpha = 0.2) + geom_segment(aes(x = -1, y = 150, xend = 15,

yend = 150), lty = 3, size = 0.1, color = "gray71", alpha = 0.2) +

geom_segment(aes(x = -1, y = -150, xend = -1, yend = 150),

lty = 3, size = 0.1, color = "gray71", alpha = 0.2) +

geom_segment(aes(x = 15, y = -150, xend = 15, yend = 150),

lty = 3, size = 0.1, color = "gray71", alpha = 0.2) +

xlim(c(-1, max(data$sumLowBefore)))

lowOnlyPlotZoomed <- ggplot(data, aes(x = (sumLowBefore - sumHighBefore),

y = activityDiff)) + geom_jitter(size = 1, alpha = 0.2) +

geom_smooth(method = "lm", color = "skyblue", fill = "skyblue",

size = 0.7, alpha = 0.8) + th + scale_x_continuous(breaks = 0:max(data$sumLowBefore),

limits = c(-1, 15)) + ylim(c(-150, 150)) + geom_smooth(color = "grey",

size = 0.4, lty = 2, alpha = 0.2) + xlab("wide only attacks before") +

ylab("activity change after") + labs(title = "Impact of wide only attacks on activity",
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Figure 2: Narrow attacks vs. weekly activity change (jittered), with linear and gam smoothing.
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Figure 3: Wide attacks vs. weekly activity change (jittered), with linear and gam smoothing.
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subtitle = "weekly counts, zoomed in") + geom_hline(yintercept = 0,

col = "red", size = 0.2, lty = 3)

The above visualises the activity change in terms of weekly counts. However, arguably, a
change of -20 for a user who posts 500 times a week has different weight than for a user who
posts 30 times. For this reason, we also need to look at changes in proportion, calculated by the
following formula:

activityScore=
activityDifference
activityBefore

(1)

We zoom in to densely populated areas of the plot for activityScore as a function of the three
types of attacks in Figure 5. The impact is still negative, more so for narrow attacks, and less so
for other types. Note that for mathematical reasons the score minimum is -1 (user activity cannot
drop more than 100%), and so the graph looks assymetric around the horizontal line.
rescale <- function(diff, act) {

diff/act

}

data$activityScore <- rescale(data$activityDiff, data$activityBefore)

propPlotHigh <- ggplot(data, aes(x = sumHighBefore, y = activityScore)) +

geom_jitter(size = 0.8, alpha = 0.3) + geom_smooth(method = "lm",

color = "skyblue", fill = "skyblue", size = 0.7, alpha = 0.8) +

th + xlab("narrow attacks before") + ylab("proportional activity change") +

labs(title = "Impact of narrow attacks on proportional activity",

subtitle = "n=3673") + scale_y_continuous(limits = c(-1,

10)) + geom_hline(yintercept = 0, col = "red", size = 0.2,

lty = 3) + scale_x_continuous(breaks = 1:15, limits = c(-1,

10)) + geom_smooth(color = "grey", size = 0.4, lty = 2, alpha = 0.2)

propPlotLow <- ggplot(data, aes(x = sumLowBefore, y = activityScore)) +

geom_jitter(size = 0.8, alpha = 0.3) + geom_smooth(method = "lm",

color = "skyblue", fill = "skyblue", size = 0.7, alpha = 0.8) +

th + xlab("wide attacks before") + ylab("proportional activity change") +

labs(title = "Impact of wide attacks on proportional activity",

subtitle = "n=3673") + scale_y_continuous(limits = c(-1,

10)) + geom_hline(yintercept = 0, col = "red", size = 0.2,

lty = 3) + scale_x_continuous(breaks = 1:15, limits = c(-1,

10)) + geom_smooth(color = "grey", size = 0.4, lty = 2, alpha = 0.2)

propPlotLowOnly <- ggplot(data, aes(x = sumLowBefore - sumHighBefore,

y = activityScore)) + geom_jitter(size = 0.8, alpha = 0.3) +

geom_smooth(method = "lm", color = "skyblue", fill = "skyblue",

size = 0.7, alpha = 0.8) + th + xlab("wide only attacks before") +

ylab("proportional activity change") + labs(title = "Impact of wide only attacks on proportional activity",

subtitle = "n=3673") + scale_y_continuous(limits = c(-1,

10)) + geom_hline(yintercept = 0, col = "red", size = 0.2,

lty = 3) + scale_x_continuous(breaks = 1:15, limits = c(-1,

10)) + geom_smooth(color = "grey", size = 0.4, lty = 2, alpha = 0.2)

4 Classical estimation

Next, we focus on the uncertainties involved. One standard way to estimate them is to use a
one-sample t-tests to estimate the means and 95% confidence intervals for activityDifference for
different numbers of attacks (this would be equivalent to running a paired t-test for activity before
and activity after).

Here is the analysis for narrow attacks. There were not enough observations for attacks above
8 (3, 2, and 2 for 9, 10 and 11 attacks, and single observations for a few higher non-zero counts)
for a t-test to be useful, so we run the t-test for up to 8 attacks.

We proceed as follows. We list 9 options of the number of attacks and initiate vectors to which
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Figure 4: Wide only attacks vs. weekly activity change (jittered), with linear and gam smooth-
ing.

no. of attacks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 19 25 26 27
count 2831 530 147 61 35 22 17 8 4 3 2 2 1 1 1 3 1 1 1 1 1
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Figure 5: Impact of attacks of three types on proportional activity change.
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we will save the confidence interval limits (low, high), the estimated mean and the p-value. We
use the same approach to analyze the other types of attacks.
attacks <- 0:8

max <- max(attacks)

low <- numeric(max + 1)

high <- numeric(max + 1)

m <- numeric(max + 1)

p <- numeric(max + 1)

t <- list()

for (attacks in attacks) {

t[[attacks + 1]] <- t.test(data[data$sumHighBefore == attacks,

]$activityDiff)

low[attacks + 1] <- t[[attacks + 1]]$conf.int[1]

high[attacks + 1] <- t[[attacks + 1]]$conf.int[2]

m[attacks + 1] <- t[[attacks + 1]]$estimate

p[attacks + 1] <- t[[attacks + 1]]$p.value

}

highTable <- as.data.frame(round(rbind(0:8, low, m, high, p),

3))

rownames(highTable) <- c("attacks", "CIlow", "estimated m", "CIhigh",

"p-value")

highTableLong <- round(data.frame(attacks = 0:8, low, m, high,

p), 3)

highTableBar <- ggplot(highTableLong) + geom_bar(aes(x = attacks,

y = m), stat = "identity", fill = "skyblue", alpha = 0.5) +

geom_errorbar(aes(x = attacks, ymin = low, ymax = high),

width = 0.4, colour = "seashell3", alpha = 0.9, size = 0.3) +

th + xlab("narrow attacks") + ylab("mean activity change") +

geom_text(aes(x = attacks, y = low - 20, label = p), size = 2) +

labs(title = "Mean impact of narrow attacks on weekly activity",

subtitle = "with 95% confidence intervals and p-values") +

scale_x_continuous(labels = 0:8, breaks = 0:8)

highTableBar6 <- ggplot(highTableLong[highTableLong$attacks <

6, ]) + geom_bar(aes(x = attacks, y = m), stat = "identity",

fill = "skyblue", alpha = 0.5) + geom_errorbar(aes(x = attacks,

ymin = low, ymax = high), width = 0.4, colour = "seashell3",

alpha = 0.9, size = 0.3) + th + xlab("narrow attacks") +

ylab("mean activity change") + geom_text(aes(x = attacks,

y = low - 20, label = p), size = 2) + labs(title = "Mean impact of narrow attacks <6 on weekly activity",

subtitle = "with 95% confidence intervals and p-values") +

scale_x_continuous(labels = 0:5, breaks = 0:5)

highTableBar3 <- ggplot(highTableLong[highTableLong$attacks <

3, ]) + geom_bar(aes(x = attacks, y = m), stat = "identity",

fill = "skyblue", alpha = 0.5) + geom_errorbar(aes(x = attacks,

ymin = low, ymax = high), width = 0.4, colour = "seashell3",

alpha = 0.9, size = 0.3) + th + xlab("narrow attacks") +

ylab("mean activity change") + geom_text(aes(x = attacks,

y = low - 5, label = p), size = 2) + labs(title = "Mean impact of narrow attacks <3 on weekly activity",

subtitle = "with 95% confidence intervals and p-values") +

scale_x_continuous(labels = 0:2, breaks = 0:2)

attacks <- 0:8

max <- max(attacks)

lowL <- numeric(max + 1)

highL <- numeric(max + 1)

mL <- numeric(max + 1)

pL <- numeric(max + 1)

tL <- list()

for (attacks in attacks) {

tL[[attacks + 1]] <- t.test(data[data$sumLowBefore == attacks,

]$activityDiff)
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attacks 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000
CIlow -3.154 -12.658 -23.390 -45.991 -94.861 -108.030 -169.527 -108.555 -144.273
estimated m -2.140 -8.251 -12.646 -25.607 -59.400 -60.864 -80.882 -46.125 -46.750
CIhigh -1.125 -3.844 -1.902 -5.222 -23.939 -13.697 7.762 16.305 50.773
p-value 0.000 0.000 0.021 0.015 0.002 0.014 0.071 0.124 0.225

lowL[attacks + 1] <- t[[attacks + 1]]$conf.int[1]

highL[attacks + 1] <- t[[attacks + 1]]$conf.int[2]

mL[attacks + 1] <- t[[attacks + 1]]$estimate

pL[attacks + 1] <- t[[attacks + 1]]$p.value

}

lowTable <- as.data.frame(round(rbind(0:8, lowL, mL, highL, pL),

3))

rownames(lowTable) <- c("attacks", "CIlow", "estimated m", "CIhigh",

"p-value")

attacks <- 0:8

max <- max(attacks)

lowLo <- numeric(max + 1)

highLo <- numeric(max + 1)

mLo <- numeric(max + 1)

pLo <- numeric(max + 1)

tLo <- list()

for (attacks in attacks) {

tLo[[attacks + 1]] <- t.test(data[data$sumLowBefore - data$sumHighBefore ==

attacks, ]$activityDiff)

lowLo[attacks + 1] <- t[[attacks + 1]]$conf.int[1]

highLo[attacks + 1] <- t[[attacks + 1]]$conf.int[2]

mLo[attacks + 1] <- t[[attacks + 1]]$estimate

pLo[attacks + 1] <- t[[attacks + 1]]$p.value

}

lowOnlyTable <- as.data.frame(round(rbind(0:8, lowLo, mLo, highLo,

pLo), 3))

rownames(lowTable) <- c("attacks", "CIlow", "estimated m", "CIhigh",

"p-value")

lowTableLong <- round(data.frame(attacks = 0:8, lowL, mL, highL,

pL), 3)

lowTableBar <- ggplot(lowTableLong) + geom_bar(aes(x = attacks,

y = m), stat = "identity", fill = "skyblue", alpha = 0.5) +

geom_errorbar(aes(x = attacks, ymin = low, ymax = high),

width = 0.4, colour = "seashell3", alpha = 0.9, size = 0.3) +

th + xlab("wide attacks") + ylab("mean activity change") +

geom_text(aes(x = attacks, y = low - 20, label = round(p,

3)), size = 2) + labs(title = "Mean impact of wide attacks on weekly activity",

subtitle = "with 95% confidence intervals and p-values") +

scale_x_continuous(labels = 0:8, breaks = 0:8)

lowOnlyTableLong <- round(data.frame(attacks = 0:8, lowLo, mLo,

highLo, pLo), 3)

lowOnlyTableBar <- ggplot(lowOnlyTableLong) + geom_bar(aes(x = attacks,

y = m), stat = "identity", fill = "skyblue", alpha = 0.5) +

geom_errorbar(aes(x = attacks, ymin = low, ymax = high),

width = 0.4, colour = "seashell3", alpha = 0.9, size = 0.3) +

th + xlab("wide only attacks") + ylab("mean activity change") +

geom_text(aes(x = attacks, y = low - 20, label = round(p,

3)), size = 2) + labs(title = "Mean impact of wide only attacks on weekly activity",

subtitle = "with 95% confidence intervals and p-values") +

scale_x_continuous(labels = 0:8, breaks = 0:8)

T-test based estimates for activity change divided by numbers of narrow attacks received:
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attacks 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000
CIlow -3.154 -12.658 -23.390 -45.991 -94.861 -108.030 -169.527 -108.555 -144.273
estimated m -2.140 -8.251 -12.646 -25.607 -59.400 -60.864 -80.882 -46.125 -46.750
CIhigh -1.125 -3.844 -1.902 -5.222 -23.939 -13.697 7.762 16.305 50.773
p-value 0.000 0.000 0.021 0.015 0.002 0.014 0.071 0.124 0.225

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000
lowLo -3.154 -12.658 -23.390 -45.991 -94.861 -108.030 -169.527 -108.555 -144.273
mLo -2.140 -8.251 -12.646 -25.607 -59.400 -60.864 -80.882 -46.125 -46.750
highLo -1.125 -3.844 -1.902 -5.222 -23.939 -13.697 7.762 16.305 50.773
pLo 0.000 0.000 0.021 0.015 0.002 0.014 0.071 0.124 0.225

T-test based estimates for activity change divided by numbers of wide attacks received:
T-test based estimates for activity change divided by numbers of wide only attacks received:
We represent this information in barplots. Two of them are restricted to different numbers of

attacks for legibility. The printed values below bars represent p-values, not the estimated means
(Figures 6, 7 and 8).
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Figure 6: T-test estimation of activity change by narrow attacks received. All available t-tests.

h6 <- data[data$sumHighBefore == 6, ]

h7 <- data[data$sumHighBefore == 7, ]

h8 <- data[data$sumHighBefore == 8, ]

# power for 6 attacks

a <- mean(data$activityDiff)

s <- sd(h7$activityDiff)

n <- 8

error <- qt(0.975, df = n - 1) * s/sqrt(n)

left <- a - error

right <- a + error

assumed <- a - 80

tleft <- (left - assumed)/(s/sqrt(n))

tright <- (right - assumed)/(s/sqrt(n))

p <- pt(tright, df = n - 1) - pt(tleft, df = n - 1)

power6 <- 1 - p
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Figure 7: T-test estimation of activity change by narrow attacks received (0-5).
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Figure 8: T-test estimation of activity change by narrow attacks received (0-2).

# power for 7 attacks

a <- mean(data$activityDiff)

s <- sd(h7$activityDiff)

n <- 8

error <- qt(0.975, df = n - 1) * s/sqrt(n)

left <- a - error
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(a) wide attacks.
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(b) wide only attacks

Figure 9: Estimated means of activity change by the number of wide and wide only attacks, with
95% confidence intervals and rounded p-values printed.

right <- a + error

assumed <- a - 80

tleft <- (left - assumed)/(s/sqrt(n))

tright <- (right - assumed)/(s/sqrt(n))

p <- pt(tright, df = n - 1) - pt(tleft, df = n - 1)

power7 <- 1 - p

# power for 8 attacks

a <- mean(data$activityDiff)

s <- sd(h8$activityDiff)

n <- 4

error <- qt(0.975, df = n - 1) * s/sqrt(n)

left <- a - error

right <- a + error

assumed <- a - 80

tleft <- (left - assumed)/(s/sqrt(n))

tright <- (right - assumed)/(s/sqrt(n))
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p <- pt(tright, df = n - 1) - pt(tleft, df = n - 1)

power8 <- 1 - p

Note fairly wide confidence intervals for higher number of attacks. These arise because attacks
are quite rare, so the sample sizes for 5, 6, 7 and 8 narrow attacks are 22, 17, 8 and 4 respectively.
This might be also the reason why p-values are not too low (although still below the usual
significance thresholds). In fact, power analysis shows that if the real activity difference for those
groups equals to the mean for narrow = 6, that is, -80, the probabilities that this effect would be
discovered by a single sample t-test for 6, 7, and 8 attacks are 0.737, 0.737, 0.309, and so tests
for higher numbers of attacks are underpowered.

We run single t-tests on different groups to estimate different means and we don’t use t-test for
hypothesis testing. To alleviate concerns about multiple testing and increased risk of type I error,
we also performed an ANOVA tests, which strongly suggest non-random correlation between the
numbers of attacks and activity change. Furthermore, 80 comparison rows in Tukey’s Honest
Significance Test (Tukey, 1949) have conservatively adjusted p-value below 0.05.
highAnova <- aov(activityDiff ~ as.factor(sumHighBefore), data = data)

lowAnova <- aov(activityDiff ~ as.factor(sumLowBefore), data = data)

lowOnlyAnova <- aov(activityDiff ~ as.factor(sumLowBefore - sumHighBefore),

data = data)

library(descr, quietly = TRUE)

library(pander, quietly = TRUE)

library(papeR, quietly = TRUE)

sh <- xtable(summary(highAnova))

rownames(sh) <- c("narrow", "residuals")

sh

Df Sum Sq Mean Sq F value Pr(>F)
narrow 20 785496 39274.798 25.03076 0
residuals 3652 5730212 1569.061

Table 1: ANOVA for activity change vs. narrow attacks received.

Df Sum Sq Mean Sq F value Pr(>F)
narrow 42 1103366 26270.608 17.61941 0
residuals 3630 5412343 1491.004

Table 2: ANOVA for activity change vs. wide attacks received.

Df Sum Sq Mean Sq F value Pr(>F)
narrow 35 1106625 31617.869 21.25946 0
residuals 3637 5409083 1487.238

Table 3: ANOVA for activity change vs. wide only attacks received.

We used t-tests, which one might think assumes normality, to estimate means for distributions,
which in fact are not normal. However, what t-test assumes is the normality of the sampling
distribution, and this condition is much easier to satisfy thanks to the central limit theorem. (see
for instance Figure 10).}
means <- numeric(10000)

for (run in 1:10000) {

means[run] <- mean(sample(data[data$sumHighBefore == 2, ]$activityDiff,

30))

}

distr <- ggplot(data[data$sumHighBefore == 2, ], aes(x = activityDiff)) +

geom_histogram(bins = 100) + th + ggtitle("Distribution of activityDiff for narrow attacks before = 2")
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sampDistr <- ggplot() + geom_histogram(aes(x = means), bins = 100) +

th + ggtitle("Simulated sampling distribution for the same with n=30 and 10 000 runs")
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Figure 10: Example of comparison of a distribution and its sampling distribution.

There are, however, some reasons to be concerned with classical methods:
• p-values and confidence intervals are hard to interpret intuitively. For instance, a 95%

confidence interval being (x,y) does not mean that the true mean is within (x,y) with
probability 0.95, and the estimated mean being z with p-value 0.01 does not mean that the
true population mean is z with probability 0.99.

• p-values and confidence intervals are sensitive to undesirable factors, such as stopping
intention in experiment design (Kruschke, 2015).

• Classical hypothesis tests require several assumptions to hold which sometimes do not
hold in reality, and the choice of significance thresholds is arbitrary.

• Crucially, probabilities reported in classical analysis are probabilities of the data on
the assumption of the null hypothesis (e.g., that the true mean is 0), not the posterior
probabilities of the true parameter values given the data. To obtain these, we used Bayesian
analysis and studied the impact of skeptical prior probabilities on how the data impacts the
posterior distribution of the parameters at hand.

5 Bayesian estimation

We used Markov Chain Monte Carlo methods (using the Bayesian Estimation Supersedes the
t-Test8 package) to estimate the posterior probability distribution for mean changes in activity
in different groups We did this for three different fairly skeptical normal prior distributions
(which we call wide, informed, and fit), whose means and standard deviations are respectively
(0,50),(−1.11,44.47) and (−1.11,7.5) (read on for an explanation why).
library(BEST)

priorsWide <- list(muM = 0, muSD = 50)

priorsInformed <- list(muM = -1.11, muSD = 44.47)

priorsFit <- list(muM = -1.11, muSD = 7.5)

These are all normal distributions with different parameters. We follow the usual practice of
presenting a Bayesian analysis with a range of options: the reader is to judge with prior seems
most plausible to them, and then modify their beliefs according to the impact the data has on
their prior convictions. The wide prior assumes that the most likely difference is 0, but the
standard deviation is quite large, the informed prior takes the mean and standard deviation of the
whole study group, whereas the fit prior follows fairly closely the actual empirical distribution
of activity change values. All of them are fairly skeptical because they expect the change to be
the same for every user, and they expect this change to be near 0. We did not use a completely

8https://www.rdocumentation.org/packages/BEST/versions/0.5.2
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uninformed uniform prior, because it is not sufficiently skeptical, being more easily impacted
by the data, and because it has some undesirable mathematical properties9 Our priors look as
in Figure 11 (note that the fitted prior looks similar when the x scale is different to make the
fitting more clearly visible; we also visualise the fitted prior in the same scale as the other priors).
Here’s the visualisation code for the wide priors, code for the other priors is analogous.
priorWide <- ggplot(data = data.frame(x = c(-200, 200)), aes(x)) +

stat_function(fun = dnorm, args = list(mean = 0, sd = 50)) +

ylab("") + scale_y_continuous(breaks = NULL) + th + xlab("expected activity change") +

labs(title = "Wide prior", subtitle = "Normal prior with m = 0, sd = 50")

priorWide

−200 −100 0 100 200
expected activity change

Normal prior with m = 0, sd = 50
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−50 0 50
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Normal prior with m = −1.11 and sd = 44.47

Informative prior

−200 −100 0 100 200
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Normal prior with m = 0, sd = 10, empirical distribution in gray

Fitted prior

Figure 11: Wide and two informative skeptical priors for our Bayesian analysis.

First, it will be convenient to split and extract the data (we will do the Bayesian analysis for
narrow attacks:
sh0 <- data[data$sumHighBefore == 0, ]$activityDiff

sh1 <- data[data$sumHighBefore == 1, ]$activityDiff

sh2 <- data[data$sumHighBefore == 2, ]$activityDiff

sh3 <- data[data$sumHighBefore == 3, ]$activityDiff

sh4 <- data[data$sumHighBefore == 4, ]$activityDiff

sh5 <- data[data$sumHighBefore == 5, ]$activityDiff

sh6 <- data[data$sumHighBefore == 6, ]$activityDiff

sh7 <- data[data$sumHighBefore == 7, ]$activityDiff

sh8 <- data[data$sumHighBefore == 8, ]$activityDiff

As an example, we go over in detail over the estimation of the impact of data for three narrow
attacks on the wide prior. We built the sample of simulated posterior probabilities and plotted the
t-distributions of 30 random steps in the approximation process together with a histogram of the
data, so that we can estimate how the simulations converged.10

mc3w <- BESTmcmc(sh3, priors = priorsWide)

plotPostPred(mc3w)

9See Don’t Use Uniform Priors. They statistically don’t make sense. at https://towardsdatascience.com/stop-using-
uniform-priors-47473bdd0b8a for an accessible explanation.

10Actually, since BEST simulations are computationally heavy, we have already run them separately and loaded the file
with the results. However, normally you would use a line like the one listed (these simulations take the more time the
larger the dataset).
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Figure 12: T-distributions for 30 random steps in Bayesian approximation (wide prior, three
attacks): y is a potential parameter value (a candidate group mean), and we plot
probability densities for the distributions detemined by the random steps.

Next, we print some information about the object we obtained:
print(mc3w)

## MCMC fit results for BEST analysis:

## 100002 simulations saved.

## mean sd median HDIlo HDIup Rhat n.eff

## mu -24.476 9.063 -24.327 -42.4760 -6.859 1.000 48767

## nu 9.626 12.988 5.275 0.9163 33.326 1.001 2867

## sigma 61.398 11.533 61.081 39.6685 84.249 1.000 9530

##

## 'HDIlo' and 'HDIup' are the limits of a 95% HDI credible interval.

## 'Rhat' is the potential scale reduction factor (at convergence, Rhat=1).

## 'n.eff' is a crude measure of effective sample size.

The simulation, among other things, produces out a sample of 100002 simulated posterior
distributions of the mean, mu. Below we briefly describe how the algorithm works.

• Potential parameter candidates are "locations" that can be visited, and as the algorithm
"travels", it writes down the visited ones.

• The algorithm starts with a random candidate θ1 for a parameter, say, that the real mean
activity change is 5. It writes down θ1 in the list of "places visited".

• It calculates the probability (density) for the observations on the assumption that θ1 indeed
is the real mean activity change. This results in p(D|θ1).

• However, what is important is p(θ1|D), the extent to which the data supports the claim
that θ1 is the right parameter. This, by Bayes’ Theorem, is related to p(D|θ1) by means of
equation (2):

p(θ1|D) =
p(D|θ1)p(θ)

p(D)
(2)

• Now, p(D) is notoriously difficult to calculate in many cases.11 However, what the
11The general problem is that for the continuous case we have p(D) =

∫
dθ p(D|θ)p(θ) and this integral can be
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simulation needs is something proportional to the right-hand side above, and so what is
used is simply p(D|θ1)p(θ): the likelihood times the prior. We call the result p′(θ1).

• Next, the algorithm considers another randomly drawn potential parameter θ2 in the
neighborhood of θ1 and calculates p′(θ2). If it is greater than p′(θ1), it moves its location
to θ2 with certainty, otherwise, it decides to move there with some non-extreme probability
only (its value is a meta-parameter chosen to optimize the algorithm convergence).

• Then it draws randomly another potential parameter in the neighborhood of wherever it
ended up, and proceeds as before. This is done for a large number of steps.

• The procedure, repeated multiple times, yields a long list of potential parameters visited,
and the frequency with which the algorithm visits certain range of potential parameters is
proportionate to the probability of these parameters being the true parameters given the
data. After normalization, a probability density for the list is obtained: this is the estimated
posterior probability distribution for the parameter in question.

For instance, it is possible to look at which potential parameters the simulation for three attacks
visited. Figure 13 represents the first 100 steps in the full simulation and parameters visited at
every 50th step (because a plot of all 100000 steps would not be clearly readable).
ggplot() + geom_line(aes(x = 1:length(mc3w$mu[1:100]), y = mc3w$mu[1:100]),

alpha = 0.7) + th + xlab("initial steps in the chain") +

ylab("potential parameter") + labs(title = "Convergence plot for first 100 steps in MCMC",

subtitle = "Wide prior, three attacks")
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Figure 13: Chain diagnostics for three attacks with wide priors.

We can collapse the plot, ignoring time, with default BESTmcmc features and obtain Figure
14. The histogram illustrates the distribution of the outcome. HDI with limits is displayed at the
bottom, and the information in green represents the t proportion of the sample that is below 0.

Rhat is a convergence measure, if the process goes well it should be around 1, and n.eff is the
effective sample size – which is often lower than the actual full sample because of autocorrelation
(in simulations next guess for a parameter depends to some extent on what the previous guess
was, and the calculation of n.eff corrects for this).

Visual inspection of Figure 14 reveals that the most visited locations (potential mean activity
drops) center around slightly less than minus twenty. In fact, the mean of those visited potential
means is -24.476 (although this does not have to be the mean of the sample, which in our case is
-25.6065574; rather it is the result of a compromise between the data and the prior). The median
is very close. The new elements are HDIlo and HDIup, the limits of the Highest Density Inverval:
the range of values that are most credible and cover 95% of the distribution. The Values within
the 95% HDI are more credible than values outside the HDI, and the values inside it have a
total probability of 95%. Crucially, these can be interpreted as posterior probabilities of various
mean candidates being the population means based on the data, which makes HDI much unlike
standard confidence intervals.

Having gone over a detailed example, we present the results of the Bayesian analysis for 0-9
narrow attacks (and a simulated prior) for three types of priors and the barplot of the means of

analytically unsolvable.
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Figure 14: Outcome plot for three attacks, wide prior.

posterior distributions (not the means of the data, but a result of a compromise between the priors
and the data) with HDIs. The total output is in Figures 15-17.
# prepare data and plot densities

bayesianWideDF <- data.frame(a0 = mc0w$mu, a1 = mc1w$mu, a2 = mc2w$mu,

a3 = mc3w$mu, a4 = mc4w$mu, a5 = mc5w$mu, a6 = mc6w$mu, a7 = mc7w$mu,

a8 = mc8w$mu)

bayesianWideDF$prior <- rnorm(nrow(bayesianWideDF), mean = 0,

sd = 50)

BayesianWideDFLong <- gather(bayesianWideDF)

BayesianWideDFLong$key <- as.factor(BayesianWideDFLong$key)

BayesianWideDensities <- ggplot(BayesianWideDFLong, aes(x = value,

group = key, color = key, fill = key)) + geom_density(alpha = 0.2) +

th + xlab("activity change") + scale_fill_discrete(name = "group",

labels = c("0 attacks", "1 attack", "2 attacks", "3 attacks",

"4 attacks", "5 attacks", "6 attacks", "7 attacks", "8 attacks",

"prior")) + guides(color = FALSE, size = FALSE) + ylim(c(0,

0.11)) + xlim(c(-90, 60)) + labs(title = "Impact of data on wide prior",

subtitle = "narrow attacks vs. activity change")

# extract means and HDI limits from the mcmc objects

wideMeans <- numeric(9)

wideLow <- numeric(9)

wideHigh <- numeric(9)

for (i in 1:9) {

wideMeans[i] <- eval(parse(text = paste("summary(mc", i -

1, "w)[1]", sep = "")))

wideLow[i] <- eval(parse(text = paste("summary(mc", i - 1,

"w)[21]", sep = "")))

wideHigh[i] <- eval(parse(text = paste("summary(mc", i -

1, "w)[26]", sep = "")))

}

# order the data and make the barplot

wideBayesTable <- round(data.frame(attacks = 0:8, wideLow, wideMeans,

wideHigh), 3)

wideBayesBar <- ggplot(wideBayesTable) + geom_bar(aes(x = attacks,

y = wideMeans), stat = "identity", fill = "skyblue", alpha = 0.5) +

geom_errorbar(aes(x = attacks, ymin = wideLow, ymax = wideHigh),

width = 0.4, colour = "seashell3", alpha = 0.9, size = 0.3) +

th + xlab("narrow attacks") + ylab("activity change") + geom_text(aes(x = attacks +
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0.24, y = wideMeans - 3, label = round(wideMeans, 1)), size = 3) +

scale_x_continuous(labels = 0:8, breaks = 0:8)

bayesianFittedDF <- data.frame(a0 = mc0f$mu, a1 = mc1f$mu, a2 = mc2f$mu,

a3 = mc3f$mu, a4 = mc4f$mu, a5 = mc5f$mu, a6 = mc6f$mu, a7 = mc7f$mu,

a8 = mc8f$mu)

bayesianFittedDF$prior <- rnorm(nrow(bayesianFittedDF), mean = -1.11,

sd = 7.5)

BayesianFittedDFLong <- gather(bayesianFittedDF)

BayesianFittedDFLong$key <- as.factor(BayesianFittedDFLong$key)

BayesianFittedDensities <- ggplot(BayesianFittedDFLong, aes(x = value,

group = key, color = key, fill = key)) + geom_density(alpha = 0.2) +

th + xlab("activity change") + scale_fill_discrete(name = "group",

labels = c("0 attacks", "1 attack", "2 attacks", "3 attacks",

"4 attacks", "5 attacks", "6 attacks", "7 attacks", "8 attacks",

"prior")) + guides(color = FALSE, size = FALSE) + ylim(c(0,

0.12)) + xlim(c(-35, 20)) + labs(title = "Impact of data on fitted prior",

subtitle = "narrow attacks vs. activity change")

fittedMeans <- numeric(9)

fittedLow <- numeric(9)

fittedHigh <- numeric(9)

for (i in 1:9) {

fittedMeans[i] <- eval(parse(text = paste("summary(mc", i -

1, "f)[1]", sep = "")))

fittedLow[i] <- eval(parse(text = paste("summary(mc", i -

1, "f)[21]", sep = "")))

fittedHigh[i] <- eval(parse(text = paste("summary(mc", i -

1, "f)[26]", sep = "")))

}

fittedBayesTable <- round(data.frame(attacks = 0:8, fittedLow,

fittedMeans, fittedHigh), 3)

fittedBayesBar <- ggplot(fittedBayesTable) + geom_bar(aes(x = attacks,

y = fittedMeans), stat = "identity", fill = "skyblue", alpha = 0.5) +

geom_errorbar(aes(x = attacks, ymin = fittedLow, ymax = fittedHigh),

width = 0.4, colour = "seashell3", alpha = 0.9, size = 0.3) +

th + xlab("narrow attacks") + ylab("activity change") + geom_text(aes(x = attacks +

0.25, y = fittedMeans - 1, label = round(fittedMeans, 1)),

size = 3) + scale_x_continuous(labels = 0:8, breaks = 0:8)

# ______________________________

bayesianInformativeDF <- data.frame(a0 = mc0i$mu, a1 = mc1i$mu,

a2 = mc2i$mu, a3 = mc3i$mu, a4 = mc4i$mu, a5 = mc5i$mu, a6 = mc6i$mu,

a7 = mc7i$mu, a8 = mc8i$mu)

bayesianInformativeDF$prior <- rnorm(nrow(bayesianInformativeDF),

mean = -1.11, sd = 44.47)

BayesianInformativeDFLong <- gather(bayesianInformativeDF)

BayesianInformativeDFLong$key <- as.factor(BayesianInformativeDFLong$key)

BayesianInvormativeDensities <- ggplot(BayesianInformativeDFLong,

aes(x = value, group = key, color = key, fill = key)) + geom_density(alpha = 0.2) +

th + xlab("activity change") + scale_fill_discrete(name = "group",

labels = c("0 attacks", "1 attack", "2 attacks", "3 attacks",

"4 attacks", "5 attacks", "6 attacks", "7 attacks", "8 attacks",

"prior")) + guides(color = FALSE, size = FALSE) + ylim(c(0,

0.11)) + xlim(c(-90, 50)) + labs(title = "Impact of data on Informative prior",

subtitle = "narrow attacks vs. activity change")

InformativeMeans <- numeric(9)

InformativeLow <- numeric(9)

InformativeHigh <- numeric(9)

for (i in 1:9) {

InformativeMeans[i] <- eval(parse(text = paste("summary(mc",

i - 1, "i)[1]", sep = "")))

InformativeLow[i] <- eval(parse(text = paste("summary(mc",
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i - 1, "i)[21]", sep = "")))

InformativeHigh[i] <- eval(parse(text = paste("summary(mc",

i - 1, "i)[26]", sep = "")))

}

InformativeBayesTable <- round(data.frame(attacks = 0:8, InformativeLow,

InformativeMeans, InformativeHigh), 3)

InformativeBayesBar <- ggplot(InformativeBayesTable) + geom_bar(aes(x = attacks,

y = InformativeMeans), stat = "identity", fill = "skyblue",

alpha = 0.5) + geom_errorbar(aes(x = attacks, ymin = InformativeLow,

ymax = InformativeHigh), width = 0.4, colour = "seashell3",

alpha = 0.9, size = 0.3) + th + xlab("narrow attacks") +

ylab("activity change") + geom_text(aes(x = attacks + 0.25,

y = InformativeMeans - 3, label = round(InformativeMeans,

1)), size = 3) + scale_x_continuous(labels = 0:8, breaks = 0:8)
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Figure 15: Prior and posterior distributions for all attacks and wide priors, with posterior means
and HDI limits in barplots.

The near-vertical lines represent the density for 0 attacks, which goes high up — plotting the
whole range of y axis would make the rest of the plot unintelligible. As the number of attacks
grow, no matter which prior we start with, the posterior means move left (which agrees with the
results we obtained with other methods) and the density plots become wider. This is partially
because the groups become smaller as the number of attacks increases, and partially because
the standard deviations between the groups are uneven (users who received more attacks seem
to display more uneven behavior – this is one of the reasons we decided to look at groups by
numbers of attacks, instead of trying to fit a regressions line).
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Figure 16: Prior and posterior distributions for all attacks and fitted priors, with posterior means
and HDI limits in barplots.

6 Model-theoretic analysis

We analyzed the correlation between attacks received and activity change using classical and
bayesian methods. However, there is a number of predictors we have not yet used. The impact
of some of them, such as the number of attacks on posts written by an author, could provide
further insight. More importantly, some of them might be confounding variables. Crucially,
since previous activity seems to be a good predictor of future activity and since high number of
attacks received in the before period correlates with high activity before, one might be concerned
that whatever explaining the value of high attacks before does in our analysis should actually be
attributed simply to activity.

To reach some clarity on such issues, we perform a regression analysis to see how the predictors
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Figure 17: Prior and posterior distributions for all attacks and informative priors, with posterior
means and HDI limits in barplots.

in best fit models interact, and to use the model parameters to get some comparison of the impact
they have. We build a number of potentially viable generalized linear regression models meant to
predict activityAfter based on a selection of other variables, pick the best one(s) and analyze what
they reveal about the predictors involved.
library(MASS)

library(vcd)

library(lmtest)

library(countreg)

library(pscl)

library(stats)

Our first challenge was finding the right distribution for the outcome variable (Figure 19).
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Figure 18: Standard deviations of activity change vs. narrow attacks.

activityAfterTab <- table(factor(data$activityAfter, levels = 0:max(data$activityAfter)))

activityAfterDf <- as.data.frame(activityAfterTab)

activityAfterDf$Var1 <- as.integer(activityAfterDf$Var1)

activityDistr <- ggplot(activityAfterDf, aes(x = Var1, y = Freq)) +

geom_bar(stat = "identity") + scale_x_continuous(breaks = seq(0,

1000, by = 50)) + th + labs(title = "Distribution of activityAfter") +

xlab("activityAfter") + ylab("count")

activityDistrRestr <- ggplot(activityAfterDf, aes(x = Var1, y = Freq)) +

geom_bar(stat = "identity") + scale_x_continuous(breaks = seq(0,

100, by = 10), limits = c(0, 100)) + th + labs(title = "Distribution of activityAfter",

subtitle = "x restricted to 0-100") + xlab("activityAfter") +

ylab("count")
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Figure 19: Empirical distribution of activityAfter

activityFitPois <- goodfit(activityAfterTab, type = "poisson")

unlist(activityFitPois$par)

summary(activityFitPois)

One potential candidate was the Poisson distribution. We identified the Poisson distribution
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that best fits the data, used its λ parameter (≈ 35.69) to perform a goodness-of-fit test (with
d f = 273, χ2 ≈ ∞ and P(> χ2)≈ 0), and compare visually the predicted values with the actual
ones.
activityFitPois <- goodfit(activityAfterTab, type = "poisson")

poissonFitPlot <- ggplot(activityAfterDf, aes(x = Var1, y = Freq)) +

geom_bar(stat = "identity", alpha = 0.6) + scale_x_continuous(breaks = seq(0,

100, by = 10), limits = c(0, 100)) + th + labs(title = "activityAfter with fitted best Poisson model predictions",

subtitle = "x restricted to 0-100") + xlab("activityAfter") +

ylab("count") + geom_point(aes(x = Var1, y = activityFitPois$fitted),

colour = "darksalmon", size = 0.5, alpha = 0.5)
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Figure 20: Poor performance of best-fitting Poisson distribution.

There were at least two problems: zero-inflation and overspread. The former means that the
model predicts much fewer zeros than there really are in the data, and the latter means that
the model predicts fewer higher values than there are in the data. The best fitting λ was fairly
high and moved the highest values of Poisson too far to the right compared to where they were
expected. Over-dispersion could be handled by moving to a quasi-Poisson distribution, but this
would not help us much with the zero counts.
activityFitNbin <- goodfit(activityAfterTab, type = "nbinom")

summary(activityFitNbin)

activityFitNbin <- goodfit(activityAfterTab, type = "nbinom")

poissonNbinPlot2 <- ggplot(activityAfterDf, aes(x = Var1, y = Freq)) +

geom_bar(stat = "identity", alpha = 0.5) + scale_x_continuous(breaks = seq(0,

100, by = 10), limits = c(0, 100)) + th + labs(title = "activityAfter with fitted best negative binomial model predictions",

subtitle = "x restricted to 0-100") + xlab("activityAfter") +

ylab("count") + geom_point(aes(x = Var1, y = activityFitNbin$fitted),

colour = "darksalmon", size = 0.5, alpha = 0.8)

Another candidate distribution we considered was negative binomial. There still were problems
with zeros although in the opposite direction though), the goodness-of-fit test resulted in χ2 ≈
647 and P(> χs) ≈ 0, but the right side of the Figure 21 looks better. This suggested that
improvements were still needed.

There are two well-known strategies to develop distributions for data with high zero counts:
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Figure 21: Somewhat better performance of best-fitting negative binomial distribution.

zero-inflated and hurdle models. In a zero-inflated Poisson (ZIP) model (Lambert 1992) a
distinction is made between the structural zeros for which the output value will always be 0, and
the rest, sometimes giving random zeros. A ZIP model is comprised of two components:

• A model for the binary event of membership in the class where 0 is necessary. Typically,
this is logistic regression.

• A Poisson (or negative binomial) model for the remaining observed count, potentially
including some zeros as well. Typically a log link is used to predict the mean.

In hurdle models (proposed initially by Cragg (1971) and developed further by Mullahy (1986))
the idea is that there may be some special “hurdle” required to reach a positive count. The model
uses:

• A logistic regression submodel to distinguish counts of zero from larger counts, and
• Truncated Poisson (or negative binomial) regression for the positive counts excluding the

zero counts.
We start with the full predictor sets. We display rootograms (they have squared frequencies on

the y-axis to increase the visibility of lower counts) for the models (Figure 22).
data$sumLowOnlyBefore <- data$sumLowBefore - data$sumHighBefore

fullModelZINbin <- zeroinfl(activityAfter ~ sumLowOnlyBefore +

sumHighBefore + sumPlBefore + sumPhBefore + activityBefore,

data = data, dist = "negbin")

fullModelHNbin <- hurdle(activityAfter ~ sumLowOnlyBefore + sumHighBefore +

sumPlBefore + sumPhBefore + activityBefore, data = data,

dist = "negbin")

fullModelZIpois <- zeroinfl(activityAfter ~ sumLowOnlyBefore +

sumHighBefore + sumPlBefore + sumPhBefore + activityBefore,

data = data, dist = "poisson")

fullModelHpois <- hurdle(activityAfter ~ sumLowOnlyBefore + sumHighBefore +

sumPlBefore + sumPhBefore + activityBefore, data = data,

dist = "poisson")
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Figure 22: Rootograms for four candidate zero-handling distributions; note the y axes are squared
counts.

The first observation was that even zero-inflation or hurdling do not improve the Poisson
distribution much. The second was that once we use negative binomial distribution, it does not
seem to make much of a difference whether we use zero-inflation or hurdling. We investigated
this further. One method of comparing such models is the Vuong test which produced z-statistic
(2.08 with p≈ 0.018) suggesting the zero-inflated negative binomial model is better than hurdle
negative binomial. However, the differences in log-likelihood (14459 vs. 14527) and AIC (28945
vs. 29081) were not large.
vuong(fullModelZINbin, fullModelHNbin)

logLik(fullModelZINbin)

AIC(fullModelZINbin)

logLik(fullModelHNbin)

AIC(fullModelHNbin)

There seem to be some reasons to prefer the zero-inflated model, but the score differences
are not too impressive, both likelihood ratios are Akaike scores are very close (note: we want to
minimize AIC and maximize log likelihood).

To move on we need to modify the variables, because some of the counts included others. This
was not a problem so far, but now we will be looking in detail at their roles jointly, and so it is
important to not count various things multiple times.
# select variables of interest

dataModeling <- data %>%

dplyr::select(sumLowOnlyBefore, sumHighBefore, sumPlBefore,

sumPhBefore, activityBefore, activityAfter)

# sum narrow now becomes sum of narrow attacks on comments

dataModeling$sumHighBefore <- dataModeling$sumHighBefore - dataModeling$sumPhBefore

# sum wide only now becomes sum of wide only on comments

dataModeling$sumLowOnlyBefore <- dataModeling$sumLowOnlyBefore -

dataModeling$sumPlBefore

# sum of wide on posts now becomes sum of wide only on
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# posts

dataModeling$sumPlBefore <- dataModeling$sumPlBefore - dataModeling$sumPhBefore

We build zero-inflated negative binomial and hurdle negative binomial models, one with all
variables, and one based on previous activity only. If we can get equally good predictions using
previous activity only and ignoring information about attacks, this would suggest no impact of
the other variables.
ZNBfull <- zeroinfl(activityAfter ~ ., data = dataModeling, dist = "negbin")

ZNBactivity <- zeroinfl(activityAfter ~ activityBefore, data = dataModeling,

dist = "negbin")

HNBfull <- hurdle(activityAfter ~ ., data = dataModeling, dist = "negbin")

HNBactivity <- hurdle(activityAfter ~ activityBefore, data = dataModeling,

dist = "negbin")

# now take a look at this

summary(dataModeling$activityAfter)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.00 2.00 10.00 35.69 38.00 1032.00

The outcome variable has third quartile of weekly activity count in the after period at 38, and
we are mostly interested in predictive accuracy where most of the users are placed. Therefore,
we look at what happens with these models up to 40 (Figure 23).
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Figure 23: Rootograms for all variables vs. activity only with zero-inflated and hurdle models.

Here, zero-inflated models under-predict low non-zero counts, while hurdle models are a bit
better in this respect, so we will focus on them. It is more difficult to see any important difference
between the two hurdle models. We compare them using likelihood ratio test. For each selection
of variables, we first pick the value of parameters in the model that maximizes the probability
density of the data given this choice of variables and these parameters (likelihood). We do this for
two nested models, then we take the log of the ratio of these, and we get a measure of how well,
comparatively, they fit the data. Moreover, multiplying this ratio by -2, we obtain a statistic that
has a χ2 distribution, which can be further used to r calculate the p-value for the null hypothesis
that the added variables make no difference.

Log-likelihood test results in χ2 ≈ 20.28, with P(> χ2) ≈ 0.009. Wald’s test is somewhat
similar (ableit more generally applicable). It also indicates that the additional variables are
significant (χ2 ≈ 24.71 with P(> χ2) ≈ 0.0017), which suggests that variables other than
previous activity are also significant.
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Finally, Akaike Information Criterion (Akaike, 1974) provides an estimator of out-of-sample
prediction error and penalizes more complex models. As long as we evaluate models with respect
to the same data, the ones with lower Akaike score should be chosen. Even with penalty for the
additional variables, the full model receives better score (although the difference is not very large,
29,081 vs. 29,085).

First, we can do this in a step-wise manner:
library(lmtest)

likHNBactivity <- logLik(HNBactivity)

likHNBfull <- logLik(HNBfull)

(teststat <- -2 * (as.numeric(likHNBactivity) - as.numeric(likHNBfull)))

## [1] 20.28267

df <- 13 - 5

(p.val <- pchisq(teststat, df = df, lower.tail = FALSE))

## [1] 0.009317915

The same result can be achieved more quickly using the following lines:
waldtest(HNBactivity, HNBfull)

AIC(HNBactivity)

AIC(HNBfull)

Next, we inspect the HNB model (Tables 5 and 6) and interpret the result.
library(stargazer)

stargazer(HNBfull)

Dependent variable:

activityAfter

sumLowOnlyBefore −0.009
(0.014)

sumHighBefore −0.008
(0.020)

sumPlBefore 0.015
(0.013)

sumPhBefore −0.139∗∗

(0.069)

activityBefore 0.015∗∗∗

(0.001)

Constant 2.534∗∗∗

(0.032)

Observations 3,673
Log Likelihood −14,527.690

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: Estimated parameters of the full hurdle negative binomial model.

The output is split into two submodels: one for predicting zeros, one for the counts. It could
be suggested to ignore those variables whose coefficients are not statistically significant, but
given the already discussed reasons to include these variables, we are not going to do this (in
fact, attaching too much value to statistical significance thresholds can be pernicious, and also
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Dependent variable:

activityAfter

sumLowOnlyBefore −0.009
(0.53)

sumHighBefore −0.008
(0.7)

sumPlBefore 0.024
(0.21)

sumPhBefore −0.147
(0.07)

activityBefore 0.015∗∗∗

(2e-16)

Constant 2.534∗∗∗

(2e-16)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: Estimated parameters of the count part of the hurdle negative binomial model.

Dependent variable:

activityAfter

sumLowOnlyBefore −0.009
(0.81)

sumHighBefore −0.111
(0.32)

sumPlBefore -0.094
(0.04)∗

sumPhBefore 0.36∗

(0.03)

activityBefore 0.08∗∗∗

(2e-16)

Constant 0.49∗∗∗

(5.04e-13)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6: Estimated parameters of the zero part of the hurdle negative binomial model.

misleading if the predictors are correlated, as attacks on posts and attacks on comments may
well be). Moreover, the results of step-wise elimination from the full model are sensitive to
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Odds ratios

count_(Intercept) 12.606
count_sumLowOnlyBefore 0.991
count_sumHighBefore 0.992
count_sumPlBefore 1.015
count_sumPhBefore 0.870

count_activityBefore 1.015
zero_(Intercept) 1.634
zero_sumLowOnlyBefore 0.990
zero_sumHighBefore 0.894
zero_sumPlBefore 0.901

zero_sumPhBefore 1.156
zero_activityBefore 1.084

the ordering in which we consider variables, and there is no principled reason to prefer any
of the orderings. Instead, interpreting p-values we apply the following advice: the closer it is
to 1, the more skeptical we should be about the judgment the model makes about its role.12

The coefficeints are somewhat difficult to interpret because the models use log link function.
Therefore we first exponentiate them to obtain odds ratios:
expCoef <- as.data.frame(round((exp(coef((HNBfull)))), 3))

colnames(expCoef) <- c("Odds ratios")

mykable(expCoef)

Next we analyze the intercepts of the count submodel. The baseline number of posts for those
who are not in the zero class is 12.6. The coefficients indicate that the multiplicative contribution
of each unit change. For instance:

• Each additional wide only attack on a user decreases the baseline by factor of .991. So,
other things being equal, receiving 10 wide attacks only would decrease a user’s activity
by 100× (1− .99110)≈ 8.6%.

• The impact of narrow attacks on comments is similar.
• Interestingly, wide only attacks on post actually increase activity, at least for those who

are not in the zero class. For instance, four of them would increase the activity by
100× (1−1.0064)≈ 2.4%.

• The strongest impact is due to narrow only attacks on posts. Even one of them decreases
one’s expected activity by 14%, thus, receiving receiving five of them reduces one’s
expected activity by 50%.

Next, regarding the zero submodel.
• The basic odds for not posting for the whole week are 1.63. This means that the probability

of belonging to the zero class is 1.63/1+1.63≈ 0.61.
• wide only attacks, narrow attacks on comments, wide only attacks on posts all decrease

the chances in being in the zero class.
• In contrast, receiving narrow attacks on posts has a strong impact, increasing the chances of

not posting anything next week. For instance, with the baseline odds 1.63, if one receives
five such attacks, other things being equal, her chances of not posting for a week go to
(1.63×1.155

1+(1.63×1.155)
≈ .76.

• Interestingly, posting in the previous week makes one slightly more likely to not post
the next week. One’s baseline probability of being active, 1− 0.61 = 0.39 goes to 1−

1.63×1.0820
1+1.63×1.0820 ≈ 0.22 if in the preceding week one wrote on Reddit 20 times, other things
being equal.

We visualise the effects of selected variables by plotting what activity levels the model predicts
for their different values (we focus on 0-40, as the top of this range is already an extrapolation),

12See the excellent book titled The Cult of Statistical Significance: How the Standard Error Costs Us Jobs, Justice, and
Lives by Stephen T. Ziliak and Deirdre N. McCloskey.
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attacks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
expected activity 24 22 19 17 15 13 11 10 9 8 7 6 6 5 5 4 4 3 3 3

while keeping other variables fixed at their mean values (Figure 24).
sumLowOnlyBefore <- rep(mean(dataModeling$sumLowOnlyBefore),

4001)

sumHighBefore <- rep(mean(dataModeling$sumHighBefore), 4001)

sumPlBefore <- rep(mean(dataModeling$sumPlBefore), 4001)

sumPhBefore <- rep(mean(dataModeling$sumPhBefore), 4001)

activityBefore <- rep(mean(dataModeling$activityBefore), 4001)

activityAfter <- rep(mean(dataModeling$activityAfter), 4001)

baseEffDf <- data.frame(sumLowOnlyBefore, sumHighBefore, sumPlBefore,

sumPhBefore, activityBefore, activityAfter)

effSizePlot <- function(columnno, range = 40, by = 5) {

EffDf <- baseEffDf

EffDf[, columnno] <- 0:4000

EffDf$prediction <- predict(HNBfull, EffDf)

ggplot(EffDf, aes(x = EffDf[, columnno], y = prediction)) +

geom_smooth(alpha = 0.5, col = "skyblue", se = FALSE) +

scale_x_continuous(breaks = seq(0, range, by = by), limits = c(-1,

range)) + th + ylab("predicted activity")

}

effLO <- effSizePlot(1, 500, 50) #low only

effH <- effSizePlot(2, 50, 5) #narrow on comments

effPl <- effSizePlot(3, 100, 10) #pl

effPh <- effSizePlot(4, 50, 5) #ph

effA <- effSizePlot(5, 200, 20) #abefore

Finally, to make sure our choice to use the hurdle model was not crucial for these results, we
also provide effect plots for the full zero-inflated model.
effSizePlotZ <- function(columnno, range = 40, by = 5) {

EffDf <- baseEffDf

EffDf[, columnno] <- 0:4000

EffDf$prediction <- predict(ZNBfull, EffDf)

ggplot(EffDf, aes(x = EffDf[, columnno], y = prediction)) +

geom_smooth(alpha = 0.5, col = "skyblue", se = FALSE) +

scale_x_continuous(breaks = seq(0, range, by = by), limits = c(-1,

range)) + th + ylab("predicted activity")

}

effLOZ <- effSizePlotZ(1, 500, 50) #wide only

effHZ <- effSizePlotZ(2, 50, 5) #high on comments

effPlZ <- effSizePlotZ(3, 100, 10) #pl

effPhZ <- effSizePlotZ(4, 50, 5) #ph

effAZ <- effSizePlotZ(5, 200, 20) #abefore

Another way to use this information is to inspect the table of activity counts that the model
expects based on the number of personal attacks on a post received in the before period, assuming
all the other input variables are kept at their mean values:
EffSumHighTable <- baseEffDf[0:20, ]

EffSumHighTable[, 4] <- 0:19

EffSumHighTable$prediction <- predict(HNBfull, EffSumHighTable)

EffTablePosts <- rbind(EffSumHighTable$sumPhBefore, round(EffSumHighTable$prediction))

rownames(EffTablePosts) <- c("attacks", "expected activity")

mykable(EffTablePosts) %>%

kable_styling(latex_options = "scale_down")

The predictions are similar, except for the predicted results of wide only attacks on posts. This
perhaps can be explained by observing that such cases of personal attacks sometimes represent
situations in which the users actually agree with the original post (see our remark in the beginning
of the section about data gathering and selection), and in some cases the attacks are critical of the
author, so there is much more variation in this group and precise modeling is harder.
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Figure 24: Predicted effects of selected variables on activity with other variables fixed at their
mean values, hurdle model.
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Figure 25: Predicted effects of selected variables on activity with other variables fixed at their
mean values, zero-inflated model.
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It should be kept in mind that the model is built on up to 27 attacks in the before period,
with really low number of attacks above 8, so the prediction here is an extrapolation, not an
interpolation. Further studies for longer periods are needed to get a more reliable estimate
allowing for interpolation in this respect.

One might have reasoned about our previous analyses as follows: attacks in the before period
correlate with activity before, and it is activity before that is the real predictor of activity after.
This could be supported by observing that the p-value for the hurdle model is really low for
activity before. Pearson correlation coefficient for narrow attacks before and activity before
is r(3671)≈ 0.437 and r(3671)≈ 0.332 for activity after. However, activity before is a much
better correlate of activity after, r(3671)≈ 0.845 — all correlations with p-value < 2.2e−16,
and regression analysis (inspect the effect plots) indicates that activity before and high attacks
before actually go in the opposite directions.

7 Regression to the mean?

Another problem plaguing observational studies is regression to the mean. If the probability of
any particular message being attacked is fairly low, users who have received an attack are quite
likely to have posted more content than the treatment group, and perhaps those who posted more
content in the before period are more likely to post less in the after period. This concern might
be elevated by the observation that activity before indeed increases with the number of attacks
received and that the activity drop increases with activity before.
attacksb <- 0:8

maxb <- max(attacks)

lowb <- numeric(max + 1)

highb <- numeric(max + 1)

mb <- numeric(max + 1)

pb <- numeric(max + 1)

tb <- list()

for (attacks in attacksb) {

t[[attacks + 1]] <- t.test(data[data$sumHighBefore == attacks,

]$activityBefore)

lowb[attacks + 1] <- t[[attacks + 1]]$conf.int[1]

highb[attacks + 1] <- t[[attacks + 1]]$conf.int[2]

mb[attacks + 1] <- t[[attacks + 1]]$estimate

pb[attacks + 1] <- t[[attacks + 1]]$p.value

}

highTableb <- as.data.frame(round(rbind(0:8, lowb, mb, highb,

pb), 3))

rownames(highTableb) <- c("attacks", "CIlow", "estimatedm", "CIhigh",

"p-value")

before <- as.data.frame(t(highTableb))

attacksa <- 0:8

maxa <- max(attacksa)

lowa <- numeric(max + 1)

higha <- numeric(max + 1)

ma <- numeric(max + 1)

pa <- numeric(max + 1)

ta <- list()

for (attacks in attacksa) {

ta[[attacks + 1]] <- t.test(data[data$sumHighBefore == attacks,

]$activityAfter)

lowa[attacks + 1] <- ta[[attacks + 1]]$conf.int[1]

higha[attacks + 1] <- ta[[attacks + 1]]$conf.int[2]

ma[attacks + 1] <- ta[[attacks + 1]]$estimate

pa[attacks + 1] <- ta[[attacks + 1]]$p.value

}

highTablea <- as.data.frame(round(rbind(0:8, lowa, ma, higha,

pa), 3))
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rownames(highTablea) <- c("attacks", "CIlow", "estimatedm", "CIhigh",

"p-value")

after <- as.data.frame(t(highTablea))

ggplot(before, aes(x = attacks, y = estimatedm)) + geom_point() +

geom_errorbar(aes(ymin = CIlow, ymax = CIhigh), width = 0.2,

size = 0.2, position = position_dodge(0.05)) + th + xlab("narrow attacks") +

ylab("mean activity") + geom_line(data = after, aes(x = attacks,

y = estimatedm), color = "skyblue") + geom_errorbar(data = after,

aes(ymin = CIlow, ymax = CIhigh), width = 0.3, size = 0.2,

color = "skyblue", position = position_dodge(0.05))
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Figure 26: Mean activity before (black) with 95% CI error bars and after (blue) , grouped by the
number of narrow attacks.

We visually inspect in Figure 27 the relation between the distance from the sample mean for
activityBefore and the activity change between week 1 and week 2, grouped by the number of
attacks received (for the cases for which we obtained significant results in the classical analysis).
h0 <- data[data$sumHighBefore == 0, ]

h1 <- data[data$sumHighBefore == 1, ]

h2 <- data[data$sumHighBefore == 2, ]

h3 <- data[data$sumHighBefore == 3, ]

h4 <- data[data$sumHighBefore == 4, ]

distance <- function(x) {

x - mean(data$sumHighBefore)

}

library(gridExtra)

grid.arrange(ggplot(h0, aes(x = distance(activityBefore), y = activityDiff)) +

geom_point(alpha = 0.3, size = 1, position = "jitter") +

geom_smooth(size = 0.5, alpha = 0.5) + th + xlab("distance from sample mean") +

ggtitle("0 narrow attacks") + ylab("activity change"), ggplot(h2,

aes(x = distance(activityBefore), y = activityDiff)) + geom_point(alpha = 0.3,

size = 1, position = "jitter") + geom_smooth(size = 0.5,

alpha = 0.5) + th + xlab("distance from sample mean") + ggtitle("2 narrow attacks") +

ylab("activity change"), ggplot(h3, aes(x = distance(activityBefore),

y = activityDiff)) + geom_point(alpha = 0.3, size = 1, position = "jitter") +

42



geom_smooth(size = 0.5, alpha = 0.5) + th + xlab("distance from sample mean") +

ggtitle("3 narrow attacks") + ylab("activity change"), ggplot(h4,

aes(x = distance(activityBefore), y = activityDiff)) + geom_point(alpha = 0.3,

size = 1, position = "jitter") + geom_smooth(size = 0.5,

alpha = 0.5) + th + xlab("distance from sample mean") + ggtitle("4 narrow attacks") +

ylab("activity change"))
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Figure 27: Distance from sample mean vs. activity change, grouped by the number of attacks
(plot for 1 narrow attack omitted, as it is visually not very too distinct from the one
for 0 attacks).

First, in an inspection of the control group, the smoothing might suggest some correlation
between the distance from the mean and the activity drop. However, the sharp cut-off at the
bottom is there because one cannot drop their activity below the previous activity level. So users
closer to the mean didn’t even have the lower options available, and this restriction might be
partially responsible for the smoothing line going downwards. Moreover, Spearman correlation
between the distance from the mean and the activity change is -0.269, which is fairly weak.
Pearson’s ρ is not very different ( -0.255), but we need to be careful here, because the relation
doesn’t seem very linear (p-values for correlation tests are both < 0.001). If, however, we follow
this line of reasoning, the distance from the mean would explain only R2 = 0.065 of the variability
in the activity change in the control group.

The impression of regression to the mean disappears when we look at activityScore, that is,
activity change in proportion to previous activity (Fig. 28).

Plots for > 0 attacks with gam smoothing does not suggest regression to the mean: it is not
the case that attacked users with higher activity before indeed tend to have lower activity in the
second week.

Next, notice that restricting the dataset to users with similar activity before still results in
uneven activity change between the groups. We focus focus on users with activityBefore restricted
to the third quartile of the whole sample (44), narrow attacks in ${0,1,2,3, 4} and estimate their
activityScore proportional drop.
iqr0 <- data[data$sumHighBefore == 0 & data$activityBefore <=

44, ]

iqr1 <- data[data$sumHighBefore == 1 & data$activityBefore <=
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Figure 28: Distance from sample mean vs. activity score, grouped by the number of attacks (plot
for 1 narrow attack omitted, as it is visually not too distinct from the one for 0 attacks).

44, ]

iqr2 <- data[data$sumHighBefore == 2 & data$activityBefore <=

44, ]

iqr3 <- data[data$sumHighBefore == 3 & data$activityBefore <=

44, ]

iqr4 <- data[data$sumHighBefore == 4 & data$activityBefore <=

44, ]

t.test(iqr0$activityScore)

t.test(iqr1$activityScore)

t.test(iqr2$activityScore)

t.test(iqr3$activityScore)

t.test(iqr4$activityScore)

The estimated means of proportional changes are 0.05,0.11,−0.09,−0.35,−0.7 with decreas-
ing p-values falling below .05 at the number of attacks = 3,4 and p-value 0.002 for four attacks
(that is, 0.01 with Bonferroni correction for multiple testing), despite the group sizes for three
and four attacks being fairly low (49 for two, 13 for three, 7 for four). By the way, note that
with this activity restriction, receiving one attack does not seem to have much impact on user’s
activity.

Further, to adjust for regression to the mean, it is sometimes recommended to use ANCOVA
to correct for prior differences in pretest measurements. In our case, a statistically significant
difference for different number of attacks received remains after correcting for differences in
activity before.
library(rstatix)

data$fhigh <- as.factor(data$sumHighBefore)

data %>%

anova_test(activityDiff ~ activityBefore + fhigh)

Finally, the model-theoretic analysis already corrects for activity before, and estimates the
effect size of the other variables keeping activity before fixed at the mean level. So, regression to
the mean, while it might play a small part, does not seem to explain the differences. However,
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Effect DFn DFd F p p<.05 ges
activityBefore 1 3651 577.220 0 * 0.137
fhigh 20 3651 10.214 0 * 0.053

Table 7: Results of ANCOVA test of activity difference vs. activity before and the number of
narrow attacks received.

the potential effects of regression to the mean have to be kept in mind in future observational
studies and replication attempts.
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